Bài 56 trang 14 SBT toán 9 tập 1

Giải bài 56 trang 14 sách bài tập toán 9. Đưa thừa số ra ngoài dấu căn...7x..

Lựa chọn câu để xem lời giải nhanh hơn

Đưa thừa số ra ngoài dấu căn; 

LG câu a

\(\sqrt {7{x^2}} \) với \(x > 0\);

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\(\sqrt {7{x^2}}  = \left| x \right|\sqrt 7  = x\sqrt 7 \) (với \(x > 0\))

LG câu b

\(\sqrt {8{y^2}} \) với \(y < 0\);

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\( \sqrt {8{y^2}} = \sqrt {4.2{y^2}} \)

\(= 2\left| y \right|\sqrt 2 = - 2y\sqrt 2 \) (với \(y < 0\))

LG câu c

\(\sqrt {25{x^3}} \) với \(x > 0\);

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\( \sqrt {25{x^3}} = \sqrt {25{x^2}x} \) 

\( = 5\left| x \right|\sqrt x = 5x\sqrt x  \) (với \(x > 0\))

LG câu d

\(\sqrt {48{y^4}} \) 

Phương pháp giải:

Áp dụng: Với \(B\ge 0\) ta có:

\(\sqrt {{A^2B}}  = \left| A \right|.\sqrt {B}\)

\( = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

\(\sqrt {48{y^4}}  = \sqrt {16.3{y^4}}  = 4{y^2}\sqrt 3 \) (vì \(y^2\ge 0\) với mọi \(y\))

HocTot.Nam.Name.Vn

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close