Giải bài 48 trang 54 sách bài tập toán 7 - Cánh diềuTìm \(n \in \mathbb{Z}\) để 2n2 – n chia hết cho n + 1 Đề bài Tìm \(n \in \mathbb{Z}\) để 2n2 – n chia hết cho n + 1 Phương pháp giải - Xem chi tiết Bước 1: Đặt tính rồi thực hiện phép chia đến khi tìm được số dư Bước 2: Tìm n để số dư bằng 0 rồi kết luận Lời giải chi tiết Đặt tính chia ta được \((2{n^2} - n):(n + 1) = 2n - 3\) dư 3 Suy ra \((2{n^2} - n) = (n + 1)(2n - 3) + 3\) Nếu \((2{n^2} - n) \vdots (n + 1)\) thì n + 1 là ước của 3 hay \(n + 1 \in \)\({\rm{\{ }} \pm {\rm{1;}} \pm {\rm{3\} }}\) + Với \(n + 1 = 1\) thì \(n = 0\) + Với \(n + 1 = - 1\) thì \(n = - 2\) + Với \(n + 1 = 3\) thì \(n = 2\) + Với \(n + 1 = - 3\) thì \(n = - 4\) Vậy \(n \in {\rm{\{ }} - 4; - 2;0;2\} \) thỏa mãn đề bài
|