Giải bài 47 trang 20 sách bài tập toán 12 - Cánh diềuKhối lượng riêng \(S\left( {kg/d{m^3}} \right)\) của nước phụ thuộc vào nhiệt độ \(T\left( {^ \circ C} \right)\) được cho bởi công thức: \(S = \frac{{5,755}}{{{{10}^8}}}{T^3} - \frac{{8,521}}{{{{10}^6}}}{T^2} + \frac{{6,540}}{{{{10}^5}}}T + 0,99987\) với \(0 < T \le 25\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). a) Tính khối lượng riêng của nước ở nhiệt độ \({25^ \circ }C\). b) Ở nhiệt độ nào thì khối lượng riêng của nước là lớn nhất? Đề bài Khối lượng riêng \(S\left( {kg/d{m^3}} \right)\) của nước phụ thuộc vào nhiệt độ \(T\left( {^ \circ C} \right)\) được cho bởi công thức: \(S = \frac{{5,755}}{{{{10}^8}}}{T^3} - \frac{{8,521}}{{{{10}^6}}}{T^2} + \frac{{6,540}}{{{{10}^5}}}T + 0,99987\) với \(0 < T \le 25\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). a) Tính khối lượng riêng của nước ở nhiệt độ \({25^ \circ }C\). b) Ở nhiệt độ nào thì khối lượng riêng của nước là lớn nhất? Phương pháp giải - Xem chi tiết Xét hàm số \(S\) trên nửa khoảng \(\left( {0;25} \right]\), lập bảng biến thiên và tìm giá trị lớn nhất của hàm số. Lời giải chi tiết a) Với \(T = 25\), ta có: \(S\left( {25} \right) = \frac{{5,755}}{{{{10}^8}}}{.25^3} - \frac{{8,521}}{{{{10}^6}}}{.25^2} + \frac{{6,540}}{{{{10}^5}}}.25 + 0,99987 \approx 0,99708\left( {kg/d{m^3}} \right)\) b) Xét hàm số \(S = \frac{{5,755}}{{{{10}^8}}}{T^3} - \frac{{8,521}}{{{{10}^6}}}{T^2} + \frac{{6,540}}{{{{10}^5}}}T + 0,99987\) trên nửa khoảng \(\left( {0;25} \right]\). Ta có: \(S' = \frac{{5,755}}{{{{10}^8}}}.3{T^2} - \frac{{8,521}}{{{{10}^6}}}.2T + \frac{{6,540}}{{{{10}^5}}} = \frac{{17,265}}{{{{10}^8}}}.{T^2} - \frac{{17,042}}{{{{10}^6}}}.T + \frac{{6,540}}{{{{10}^5}}}\) \(S' = 0\) khi \(t \approx 4\). Bảng biến thiên của hàm số: Căn cứ vào bảng biến thiên, ta có: \(\mathop {\max }\limits_{\left( {0;25} \right]} S = 1\) tại \(t = 4\). Vậy ở nhiệt độ \({4^ \circ }C\) thì khối lượng riêng của nước là lớn nhất.
|