Giải bài 46 trang 20 sách bài tập toán 12 - Cánh diều

Nồng độ \(C\) của một loại hoá chất trong máu sau \(t\) giờ tiêm vào cơ thể được cho bởi công thức: \(C\left( t \right) = \frac{{3t}}{{27 + {t^3}}}\) với \(t \ge 0\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Sau khoảng bao nhiêu giờ tiêm thì nồng độ của hoá chất trong máu là cao nhất?

Đề bài

Nồng độ \(C\) của một loại hoá chất trong máu sau \(t\) giờ tiêm vào cơ thể được cho bởi công thức: \(C\left( t \right) = \frac{{3t}}{{27 + {t^3}}}\) với \(t \ge 0\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014).

Sau khoảng bao nhiêu giờ tiêm thì nồng độ của hoá chất trong máu là cao nhất?

Phương pháp giải - Xem chi tiết

Xét hàm số \(C\left( t \right)\) trên nửa khoảng \(\left[ {0; + \infty } \right)\), lập bảng biến thiên và tìm giá trị lớn nhất của hàm số.

Lời giải chi tiết

Xét hàm số \(C\left( t \right) = \frac{{3t}}{{27 + {t^3}}}\) trên nửa khoảng \(\left[ {0; + \infty } \right)\).

Ta có:

\(C'\left( t \right) = \frac{{{{\left( {3t} \right)}^\prime }.\left( {27 + {t^3}} \right) - \left( {3t} \right).{{\left( {27 + {t^3}} \right)}^\prime }}}{{{{\left( {27 + {t^3}} \right)}^2}}} = \frac{{3\left( {27 + {t^3}} \right) - \left( {3t} \right).3{t^2}}}{{{{\left( {27 + {t^3}} \right)}^2}}} = \frac{{81 - 6{{\rm{x}}^3}}}{{{{\left( {27 + {t^3}} \right)}^2}}}\)

\(C'\left( t \right) = 0\) khi \(t = \frac{{3\sqrt[3]{4}}}{2}\).

Bảng biến thiên của hàm số:

Căn cứ vào bảng biến thiên, ta có: \(\mathop {\max }\limits_{\left( {0;4} \right)} C\left( t \right) = \frac{{\sqrt[3]{4}}}{9}\) tại \(t = \frac{{3\sqrt[3]{4}}}{2}\).

Vậy sau khoảng \(t = \frac{{3\sqrt[3]{4}}}{2} \approx 2,38\) giờ thì nồng độ của hoá chất trong máu là cao nhất.

  • Giải bài 47 trang 20 sách bài tập toán 12 - Cánh diều

    Khối lượng riêng \(S\left( {kg/d{m^3}} \right)\) của nước phụ thuộc vào nhiệt độ \(T\left( {^ \circ C} \right)\) được cho bởi công thức: \(S = \frac{{5,755}}{{{{10}^8}}}{T^3} - \frac{{8,521}}{{{{10}^6}}}{T^2} + \frac{{6,540}}{{{{10}^5}}}T + 0,99987\) với \(0 < T \le 25\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). a) Tính khối lượng riêng của nước ở nhiệt độ \({25^ \circ }C\). b) Ở nhiệt độ nào thì khối lượng riêng của nước là lớn nhất?

  • Giải bài 45 trang 20 sách bài tập toán 12 - Cánh diều

    Nhóm bạn Đức dựng trên một khu đất bằng phẳng một chiếc lều từ một tấm bạt hình vuông có độ dài cạnh 4 m như Hình 9 với hai mép tấm bạt sát mặt đất. Tính khoảng cách \(AB\) để khoảng không gian trong lều là lớn nhất.

  • Giải bài 44 trang 20 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = {3^x} + {3^{ - x}}\) trên đoạn \(\left[ { - 1;2} \right]\); b) \(y = x.{e^{ - 2{{\rm{x}}^2}}}\) trên đoạn \(\left[ {0;1} \right]\); c) \(y = \ln \left( {{x^2} + 2{\rm{x}} + 3} \right)\) trên đoạn \(\left[ { - 2;3} \right]\); d) \(y = - 3{\rm{x}} + 5 + x\ln {\rm{x}}\) trên đoạn \(\left[ {1;3} \right]\);

  • Giải bài 43 trang 20 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = \sin 2{\rm{x}} - x\) trên đoạn \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\); b) \(y = x + {\cos ^2}x\) trên đoạn \(\left[ {0;\frac{\pi }{4}} \right]\);

  • Giải bài 42 trang 19 sách bài tập toán 12 - Cánh diều

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = 2{x^3} + 3{{\rm{x}}^2} - 12{\rm{x}} + 1\) trên đoạn \(\left[ { - 1;5} \right]\); b) \(y = {\left( {x - \sqrt 2 } \right)^2}.{\left( {x + \sqrt 2 } \right)^2}\) trên đoạn \(\left[ { - \frac{1}{2};2} \right]\); c) \(y = {x^5} - 5{{\rm{x}}^4} + 5{{\rm{x}}^3} + 1\) trên đoạn \(\left[ { - 1;2} \right]\); d) \(y = x + \frac{4}{x}\) trên đoạn \(\left[ {3;4} \right]\); e) \(y = \sqrt {x - 1} + \sqrt {3 - x} \); g) \(y = x\sqrt

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close