Giải bài 40 trang 137 sách bài tập toán 9 - Cánh diều tập 2Từ một khối gỗ hình trụ (T) với hai đường tròn đáy là (A; R), (A’; R) và đường cao AA’ = h, người ta khoét đi một khối hình nón (N) có bán kính đường tròn đáy (A'C = frac{2}{3}R) và đường cao trùng với đường cao của hình trụ (T) (Hình 28). Hỏi thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) bằng bao nhiêu phần trăm thể tích của khối gỗ (T) ban đầu (làm tròn kết quả đến hàng phần mười)? Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Từ một khối gỗ hình trụ (T) với hai đường tròn đáy là (A; R), (A’; R) và đường cao AA’ = h, người ta khoét đi một khối hình nón (N) có bán kính đường tròn đáy \(A'C = \frac{2}{3}R\) và đường cao trùng với đường cao của hình trụ (T) (Hình 28). Hỏi thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) bằng bao nhiêu phần trăm thể tích của khối gỗ (T) ban đầu (làm tròn kết quả đến hàng phần mười)?
Phương pháp giải - Xem chi tiết Dựa vào: Thể tích hình trụ: \(V = \pi {r^2}h\). Thể tích của hình nón: \(V = \frac{1}{3}\pi {r^2}h\). Lời giải chi tiết Thể tích của khối gỗ hình trụ (T) là: πR2h. Thể tích của khối gỗ hình nón (N) là: \(\frac{1}{3}\pi .{\left( {\frac{2}{3}R} \right)^2}.h = \frac{4}{{27}}\pi {R^2}h\). Thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối gỗ hình nón (N) là \(\pi {R^2}h - \frac{4}{{27}}\pi {R^2}h = \frac{{23}}{{27}}\pi {R^2}h\). Tỉ số phần trăm của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) so với thể tích của khối gỗ (T) ban đầu là \(\frac{{\frac{{23}}{{27}}\pi {R^2}h}}{{\pi {R^2}h}}.100\% \approx 85,2\% \). Vậy thể tích phần còn lại của khối gỗ (T) sau khi khoét bỏ khối hình nón (N) bằng khoảng 85,2% thể tích của khối gỗ (T) ban đầu.
|