Giải bài 4 trang 84, 85 vở thực hành Toán 9 tập 2Túi I đựng 4 quả cầu được đánh số 1, 2, 3, 4. Túi II đựng 5 quả cầu được đánh số 1, 2, 3, 4, 5. Lấy ngẫu nhiên một quả cầu từ mỗi túi I và II. a) Mô tả không gian mẫu. b) Tính xác suất của các biến cố sau: A: “Hai số ghi trên hai quả cầu bằng nhau”; B: “Hai số ghi trên hai quả cầu chênh nhau 2 đơn vị”; C: “Hai số ghi trên hai quả cầu chênh nhau lớn hơn 1 đơn vị”. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Túi I đựng 4 quả cầu được đánh số 1, 2, 3, 4. Túi II đựng 5 quả cầu được đánh số 1, 2, 3, 4, 5. Lấy ngẫu nhiên một quả cầu từ mỗi túi I và II. a) Mô tả không gian mẫu. b) Tính xác suất của các biến cố sau: A: “Hai số ghi trên hai quả cầu bằng nhau”; B: “Hai số ghi trên hai quả cầu chênh nhau 2 đơn vị”; C: “Hai số ghi trên hai quả cầu chênh nhau lớn hơn 1 đơn vị”. Phương pháp giải - Xem chi tiết Cách tính xác suất của một biến cố E: Bước 1. Mô tả không gian mẫu của phép thử. Từ đó xác định số phần tử của không gian mẫu \(\Omega \). Bước 2. Chứng tỏ các kết quả có thể của phép thử là đồng khả năng. Bước 3. Mô tả kết quả thuận lợi của biến cố E. Từ đó xác định số kết quả thuận lợi cho biến cố E. Bước 4. Lập tỉ số giữa số kết quả thuận lợi cho biến cố E với số phần tử của không gian mẫu \(\Omega \). Lời giải chi tiết Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau: Mỗi ô ở bảng trên là một kết quả có thể. Có 20 kết quả có thể là đồng khả năng. - Có 4 kết quả thuận lợi cho biến cố A là (1, 1); (2, 2); (3, 3); (4, 4). Vậy \(P\left( A \right) = \frac{4}{{20}} = \frac{1}{5}\). - Có 6 kết quả thuận lợi cho biến cố B là (1, 3); (3, 1); (2; 4); (4; 2); (3, 5); (5, 3). Vậy \(P\left( B \right) = \frac{6}{{20}} = \frac{3}{{10}}\). - Có 9 kết quả thuận lợi cho biến cố C là (1, 3); (1, 4); (1, 5); (2; 4); (2, 5); (3, 1); (3, 5); (4; 1); (4; 2). Vậy \(P\left( C \right) = \frac{9}{{20}}\).
|