Giải bài 4 trang 56 vở thực hành Toán 9

Cho căn thức (sqrt {{x^2} - 4x + 4} ). a) Hãy chứng tỏ căn thức xác định với mọi giá trị của x. b) Rút gọn căn thức đã cho với (x ge 2). c) Chứng tỏ rằng với mọi (x ge 2), biểu thức (sqrt {x - sqrt {{x^2} - 4x + 4} } ) có giá trị không đổi.

Đề bài

Cho căn thức \(\sqrt {{x^2} - 4x + 4} \).

a) Hãy chứng tỏ căn thức xác định với mọi giá trị của x.

b) Rút gọn căn thức đã cho với \(x \ge 2\).

c) Chứng tỏ rằng với mọi \(x \ge 2\), biểu thức \(\sqrt {x - \sqrt {{x^2} - 4x + 4} } \) có giá trị không đổi.

Phương pháp giải - Xem chi tiết

a) \(\sqrt A \) xác định khi A lấy giá trị không âm và ta thường viết là \(A \ge 0\). Ta nói \(A \ge 0\) là điều kiện xác định (hay điều kiện có nghĩa) của \(\sqrt A \).

b, c) \(\sqrt {{A^2}}  = \left| A \right|\) với A là một biểu thức.

Lời giải chi tiết

a) Vì \({x^2} - 4x + 4 = {\left( {x - 2} \right)^2} \ge 0\) với mọi giá trị của x nên căn thức \(\sqrt {{x^2} - 4x + 4} \) xác định với mọi giá trị của x.

b) Với \(x \ge 2\) thì \(\sqrt {{x^2} - 4x + 4}  = \sqrt {{{\left( {x - 2} \right)}^2}}  = \left| {x - 2} \right| = x - 2\)

c) Với \(x \ge 2\) thì \(\sqrt {{x^2} - 4x + 4}  = x - 2\) nên

\(\sqrt {x - \sqrt {{x^2} - 4x + 4} }  = \sqrt {x - \left( {x - 2} \right)}  = \sqrt 2 \)

Vậy căn thức có giá trị không đổi với mọi \(x \ge 2\).

  • Giải bài 5 trang 57 vở thực hành Toán 9

    Vận tốc (m/s) của một vật đang bay được cho bởi công thức (v = sqrt {frac{{2E}}{m}} ), trong đó E là động năng của vật (tính bằng Joule, kí hiệu là J) và m (kg) là khối lượng của vật (Theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016). Tính vận tốc bay của một vật khi biết vật đó có khối lượng 2,5kg và động năng 281,25J.

  • Giải bài 6 trang 57 vở thực hành Toán 9

    Vận tốc của ô tô và vết trượt bánh xe trên mặt đường khi xe phanh gấp liên hệ với nhau bởi công thức ({v^2} = 20kl), trong đó v(m/s) là vận tốc của xe khi phanh gấp, k là hệ số ma sát giữa bánh xe và mặt đường khi xe phanh và l(m) là độ dài vết trượt của bánh xe trên mặt đường. a) Viết công thức tính vận tốc xe theo hệ số ma sát k và độ dài l của vết trượt bánh xe khi ô tô phanh. b) Ô tô đang chạy trên mặt đường thì phanh gấp và tạo ra vết trượt của bánh xe dài 25m. Biết hệ số ma sát giữa bá

  • Giải bài 7 trang 57 vở thực hành Toán 9

    Không dùng MTCT, tính giá trị biểu thức sau: (A = frac{{sqrt 2 + sqrt 3 + sqrt 6 + sqrt 8 + sqrt {16} }}{{sqrt 1 + sqrt 2 }} - left( {sqrt 1 + sqrt 2 + sqrt 3 + sqrt 4 } right)).

  • Giải bài 3 trang 56 vở thực hành Toán 9

    Chứng minh rằng: a) ({left( {1 - sqrt 2 } right)^2} = 3 - 2sqrt 2 ); b) ({left( {sqrt 3 + sqrt 2 } right)^2} = 5 + 2sqrt 6 ).

  • Giải bài 2 trang 56 vở thực hành Toán 9

    Thực hiện phép tính: a) (sqrt 3 left( {sqrt {192} - sqrt {75} } right)); b) (frac{{ - 3sqrt {18} + 5sqrt {50} - sqrt {128} }}{{7sqrt 2 }}).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close