Giải bài 4 trang 13 Chuyên đề học tập Toán 10 – Chân trời sáng tạoTìm phương trình của parabol (P):y=ax2+bx+c(a≠0)biết: Đề bài Tìm phương trình của parabol (P):y=ax2+bx+c(a≠0)biết: a) (P) có trục đối xứng x=1 và đi qua hai điểm A(1;−4),B(2;−3). b) (P) có đỉnh I(12;34) và đi qua điểm M(−1;3) Lời giải chi tiết Trục đối xứng x=−b2a Đỉnh I(−b2a;−Δ4a) với Δ=b2−4ac Lời giải chi tiết a) (P) có trục đối xứng x=1⇒−b2a=1⇔2a+b=0(1) Thay tọa độ 2 điểm A(1;−4),B(2;−3) vào phương trình của parabol, kết hợp (1) ta được hệ phương trình: {2a+b=0(1)a+b+c=−4(2)4a+2b+c=−3(3) Sử dụng máy tính cầm tay, ta suy ra a=1,b=−2,c=−3 Vậy phương trình của parabpol (P) là y=x2−2x−3 b) (P) có đỉnh I(12;34)⇒−b2a=12(1);−b2−4ac4a=34(2) (1)⇔a+b=0 Thay b=−a vào (2) ta được: (2)⇔a2−4ac=−3a⇔a−4c=−3 (do a≠0) Thay tọa độ điểm M(−1;3) vào phương trình của parabol, ta được: a−b+c=3 Kết hợp (1) và (2) ta được hệ phương trình: {a+b=0(1)a−4c=−3(2)a−b+c=3(3) Sử dụng máy tính cầm tay, ta suy ra a=1,b=−1,c=1 Vậy phương trình của parabpol (P) là y=x2−x+1
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
|