-
Câu hỏi mục 1 trang 50, 51
Cho hypebol (H) với phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) và điểm \(M({x_0};{y_0})\) nằm trên (H). Các điểm \({M_1}( - {x_0};{y_0}),{M_2}({x_0}; - {y_0}),{M_3}( - {x_0}; - {y_0})\) có thuộc (H) không?
Xem chi tiết -
Câu hỏi mục 2 trang 52, 53
Cho điểm (M(x;y))nằm trên hypebol (H): (frac{{{x^2}}}{{{a^2}}} - frac{{{y^2}}}{{{b^2}}} = 1)
Xem chi tiết -
Câu hỏi mục 3 trang 53
Cho hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\). Chứng tỏ rằng \(\frac{c}{a} > 1.\)
Xem chi tiết -
Câu hỏi mục 4 trang 54, 55, 56
Cho điểm M (x; y) trên hypebol (H) \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 7). Gọi \(d(M,{\Delta _1}),d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến các đường thẳng \({\Delta _1},{\Delta _2}.\)
Xem chi tiết -
Bài 2 trang 55
Lập phương trình chính tắc của hypebol có tiêu cự bằng 20 và khoảng cách giữa hai đường chuẩn là (frac{{36}}{5}).
Xem chi tiết -
Bài 3 trang 55
Cho đường tròn (C) tâm ({F_1}), bán kính r và một điểm ({F_2}) thỏa mãn ({F_1}{F_2} = 4r).
Xem chi tiết -
Bài 4 trang 55
Trong hoạt động mở đầu bài học, cho biết khoảng cách giữa hai trạm vô tuyến là 600km,
Xem chi tiết