Bài 3.37 trang 160 SBT hình học 11

Bài 3.37 trang 160 sách bài tập hình học 11. Tính khoảng cách giữa hai cạnh đối trong một tứ diện đều cạnh a.

Đề bài

Tính khoảng cách giữa hai cạnh đối trong một tứ diện đều cạnh a. 

Lời giải chi tiết

Giả thiết cho ABCD là tứ diện đều nên các cặp cạnh đối diện của tứ diện đó có vai trò như nhau.

Do đó ta chỉ cần tính khoảng cách giữa hai cạnh AB và CD là đủ. 

Gọi I và K lần lượt là trung điểm của AB và CD.

Tam giác BCD và ACD đều cạnh a nên hai đường trung tuyến \(BK = AK = \dfrac{{a\sqrt 3 }}{2}\) hay tam giác ABK cân tại K.

I là trung điểm AB nên \(KI \bot AB\).

Tương tự ta có \(IK \bot CD\).

Do đó IK là đoạn vuông góc chung của AB và CD nên nó chính là khoảng cách giữa AB và CD.

Tam giác BKI vuông tại I.  Ta có :

\(I{K^2} = B{K^2} - B{I^2} = {\left( {{{a\sqrt 3 } \over 2}} \right)^2} - {\left( {{a \over 2}} \right)^2} = {{{a^2}} \over 2}\)

Vậy \(IK = {{a\sqrt 2 } \over 2}\).

HocTot.Nam.Name.Vn

  • Bài 3.38 trang 160 SBT hình học 11

    Giải bài 3.38 trang 160 sách bài tập hình học 11. Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng AC=BC=AD=BD=a và AB=p; CD=q.

  • Bài 3.39 trang 160 SBT hình học 11

    Giải bài 3.39 trang 160 sách bài tập hình học 11. Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC...

  • Bài 3.40 trang 160 SBT hình học 11

    Giải bài 3.40 trang 160 sách bài tập hình học 11. Cho hình lăng trụ tam giác ABC.A’B’C’có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60°...

  • Bài 3.36 trang 160 SBT hình học 11

    Giải bài 3.36 trang 160 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AD = 2a và có cạnh SA vuông góc với mặt phẳng đáy (ABCD) ...

  • Bài 3.35 trang 160 SBT hình học 11

    Giải bài 3.35 trang 160 sách bài tập hình học 11. Cho hình lập phương ABCD.A’B’C’D’. a) Chứng minh đường thẳng BC’ vuông góc với mặt phẳng (A’B’CD)...

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close