Bài 32 trang 10 SBT toán 9 tập 1

Giải bài 32 trang 10 sách bài tập toán 9. Rút gọn các biểu thức...

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn các biểu thức: 

LG câu a

\(\sqrt {4{{(a - 3)}^2}} \) với \(a ≥ 3\) ;

Phương pháp giải:

Áp dụng: 

\(\sqrt {{A^2}}  = \left| A \right|\) 

Với \(A \ge 0\) thì \(\left| A \right| = A\)

Với \(A < 0\) thì \(\left| A \right| = -A\).

Lời giải chi tiết:

\(\eqalign{
& \sqrt {4{{(a - 3)}^2}} = \sqrt 4 .\sqrt {{{(a - 3)}^2}} \cr 
& = 2.\left| {a - 3} \right| = 2(a - 3)\,(do\,\,a ≥ 3) \cr} \)

LG câu b

\(\sqrt {9{{(b - 2)}^2}} \) với \(b < 2\) ;

Phương pháp giải:

Áp dụng: 

\(\sqrt {{A^2}}  = \left| A \right|\) 

Với \(A \ge 0\) thì \(\left| A \right| = A\)

Với \(A < 0\) thì \(\left| A \right| = -A\).

\(\sqrt {A.B}  = \sqrt A .\sqrt B \) với \((A \ge 0;B \ge 0)\).

Lời giải chi tiết:

\(\eqalign{
& \sqrt {9{{(b - 2)}^2}} = \sqrt 9 \sqrt {{{(b - 2)}^2}} \cr 
& = 3.\left| {b - 2} \right| = 3(2 - b) \,(do\,\,b<2)\cr} \)

LG câu c

\(\sqrt {{a^2}{{(a + 1)}^2}} \) với \(a > 0\) ;

Phương pháp giải:

Áp dụng: 

\(\sqrt {{A^2}}  = \left| A \right|\) 

Với \(A \ge 0\) thì \(\left| A \right| = A\)

Với \(A < 0\) thì \(\left| A \right| = -A\).

\(\sqrt {A.B}  = \sqrt A .\sqrt B \) với \((A \ge 0;B \ge 0)\).

Lời giải chi tiết:

\(\eqalign{
& \sqrt {{a^2}{{(a + 1)}^2}} = \sqrt {{a^2}} .\sqrt {{{(a + 1)}^2}} \cr 
& = \left| a \right|.\left| {a + 1} \right| = a(a + 1) \,\,(do\,\,a>0)\cr} \)

LG câu d

\(\sqrt {{b^2}{{(b - 1)}^2}} \) với \(b < 0\) .

Phương pháp giải:

Áp dụng: 

\(\sqrt {{A^2}}  = \left| A \right|\) 

Với \(A \ge 0\) thì \(\left| A \right| = A\)

Với \(A < 0\) thì \(\left| A \right| = -A\).

\(\sqrt {A.B}  = \sqrt A .\sqrt B \) với \((A \ge 0;B \ge 0)\).

Lời giải chi tiết:

\(\eqalign{
& \sqrt {{b^2}{{(b - 1)}^2}} = \sqrt {{b^2}} .\sqrt {{{(b - 1)}^2}} \cr 
& = \left| b \right|.\left| {b - 1} \right| = - b(1 - b) \,(do\,\,b<0)\cr} \)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close