Bài 30 trang 83 SBT toán 8 tập 1

Giải bài 30 trang 83 sách bài tập toán 8. Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE...

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) cân tại \(A.\) Lấy điểm \(D\) trên cạnh \(AB,\) điểm \(E\) trên cạnh \(AC\) sao cho \(AD = AE.\)

LG a

\(\) Tứ giác \(BDEC\) là hình gì \(?\) Vì sao \(?\)

Phương pháp giải:

Ta sử dụng kiến thức:

+) Hình thang là tứ giác có hai cạnh đối song song.

+) Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

Lời giải chi tiết:

Ta có: \(AD = AE \;\;\; (gt)\) 

\(⇒ ∆ ADE\) cân tại \(A\)

\( \Rightarrow \widehat {ADE} = \displaystyle {{{{180}^0} - \widehat A} \over 2}\) 

\(∆ ABC\) cân tại \(A\)

\( \Rightarrow \widehat {ABC} = \displaystyle {{{{180}^0} - \widehat A} \over 2}\) 

Suy ra:  \(\widehat {ADE} = \widehat {ABC}\)

\(⇒ DE // BC\) (vì có cặp góc đồng vị bằng nhau)

Tứ giác \(BDEC\) là hình thang

\(\widehat {ABC} = \widehat {ACB}\) (tính chất tam giác cân)

Hay \(\widehat {DBC} = \widehat {ECB}\). Vậy BDEC là hình thang cân

LG b

\(\) Các điểm \(D,\) \(E\) ở vị trí nào thì \(BD = DE = EC\) \(?\)

Phương pháp giải:

Ta sử dụng kiến thức:

+) Hình thang là tứ giác có hai cạnh đối song song.

+) Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

Lời giải chi tiết:

\(\) Giả sử: \(BD = DE\) \(⇒ ∆ BDE\) cân tại \(D\)

\( \Rightarrow {\widehat B_1} = {\widehat E_1}\)

Mà \({\widehat E_1} = {\widehat B_2}\) (so le trong)

\( \Rightarrow {\widehat B_1} = {\widehat B_2}\)

\(\Rightarrow BE\) là tia phân giác của \(\widehat {ABC}.\)

Giả sử: \(DE = EC\) \(⇒∆ DEC\) cân tại \(E\)

\( \Rightarrow {\widehat D_1} = {\widehat C_1}\)

\({\widehat D_1} = {\widehat C_2}\) (so le trong)

\( \Rightarrow {\widehat C_1} = {\widehat C_2}\)

\(\Rightarrow CD\) là tia phân giác của \(\widehat {ACB}.\)

Vậy khi \(BE\) là tia phân giác của \(\widehat {ABC}\), \(CD\) là tia phân giác của \(\widehat {ACB}\) thì \(BD = DE = EC.\)

HocTot.Nam.Name.Vn

  • Bài 31 trang 83 SBT toán 8 tập 1

    Giải bài 31 trang 83 sách bài tập toán 8. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD, BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực của hai đáy.

  • Bài 32 trang 83 SBT toán 8 tập 1

    Giải bài 32 trang 83 sách bài tập toán 8. a.Hình thang cân ABCD có đáy nhỏ AB = b, đáy lớn CD = a, đường cao AH...

  • Bài 33 trang 83 SBT toán 8 tập 1

    Giải bài 33 trang 8 sách bài tập toán 8. Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

  • Bài 3.1 phần bài tập bổ sung trang 83 SBT toán 8 tập 1

    Giải bài 3.1 phần bài tập bổ sung trang 83 sách bài tập toán 8. Hình thang cân ABCD (AB // CD) có góc A bằng 70 độ.Khẳng định nào dưới đây là đúng ?...

  • Bài 3.2 phần bài tập bổ sung trang 84 SBT toán 8 tập 1

    Giải bài 3.2 phần bài tập bổ sung trang 84 sách bài tập toán 8. Hình thang cân ABCD (AB// CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close