Giải bài 3 trang 58 vở thực hành Toán 8

Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.

Đề bài

Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.

Phương pháp giải - Xem chi tiết

Dựa vào dấu hiệu nhận biết hình chữ nhật.

Lời giải chi tiết

(H.3.29). Ta có: AM = MC, HM = MN nên tứ giác AHCN có hai đường chéo AC, HN cắt nhau tại trung điểm mỗi đường nên AHCN là hình bình hành.

Vì \(\widehat {AHC} = 90^\circ \) hay hình bình hành AHCN có một góc vuông nên AHCN là hình chữ nhật.

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close