Giải bài 3 trang 33 SGK Toán 7 tập 2 - Cánh diều

Viết ngẫu nhiên một số tự nhiên có hai chữ số. Tìm số phần tử của tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra. Sau đó, hãy tính xác suất của mỗi biến cố sau: a) “Số tự nhiên được viết ra là bình phương của một số tự nhiên”; b) “Số tự nhiên được viết ra là bội của 15”; c) “Số tự nhiên được viết ra là ước của 120”.

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Viết ngẫu nhiên một số tự nhiên có hai chữ số. Tìm số phần tử của tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:

a) “Số tự nhiên được viết ra là bình phương của một số tự nhiên”;

b) “Số tự nhiên được viết ra là bội của 15”;

c) “Số tự nhiên được viết ra là ước của 120”.

Phương pháp giải - Xem chi tiết

Xác định các kết quả thuận lợi để xảy ra biến cố.

Xác suất của một biến cố trong trò chơi viết ngẫu nhiên một số tự nhiên bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với số tự nhiên được viết ra.

a) Để đưa ra những kết quả thuận lợi cho biến cố, ta cần xác định những số nào là bình phương của 1 số tự nhiên.

Số được viết ra có thể biểu diễn dưới dạng \({x^2}\)

b) Số tự nhiên được viết ra là bội của 15 tức số được viết ra chia hết cho 15.

c) Số tự nhiên được viết ra là ước của 120 tức 120 chia hết cho số được viết ra.

Lời giải chi tiết

Tập hợp D gồm các kết quả có thể xảy ra đối với số tự nhiên được viết ra là:

D = {10; 11; 12; …; 97; 98; 99}

Số phần tử của D là 90

a) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bình phương của một số tự nhiên” là: 16, 25, 36, 49, 64, 81.

Vì thế, xác suất của biến cố trên là: \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\)

b) Có sáu kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là bội của 15” là: 15, 30, 45, 60, 75, 90.

Vì thế, xác suất của biến cố trên là: \(\dfrac{6}{{90}} = \dfrac{1}{{15}}\)

c) Có tám kết quả thuận lợi cho biến cố “Số tự nhiên được viết ra là ước của 120” là: 10, 12, 15, 20, 24, 30, 40, 60.

Vì thế, xác suất của biến cố trên là: \(\dfrac{{8}}{{90}} = \dfrac{4}{45}\)

  • Giải bài 4 trang 33 SGK Toán 7 tập 2 - Cánh diều

    Tổ I của lớp 7D có 5 học sinh nữ là: Ánh, Châu, Hương, Hoa, Ngân và 5 học sinh nam là: Bình, Dũng, Hùng, Huy, Việt. Chọn ra ngẫu nhiên một học sinh trong Tổ I của lớp 7D. Tìm số phần tử của tập hợp E gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau: a) “Học sinh được chọn ra là học sinh nữ”; b) “Học sinh được chọn ra là học sinh nam”.

  • Giải bài 5 trang 33 SGK Toán 7 tập 2 - Cánh diều

    Một nhóm học sinh quốc tế gồm 9 học sinh đến từ các nước: Việt Nam, Ấn Độ, Ai Cập, Brasil, Canada, Tây Ban Nha, Đức, Pháp, Nam Phi; mỗi nước chỉ có đúng một học sinh. Chọn ra ngẫu nhiên một học sinh trong nhóm học sinh quốc tế trên. Tìm số phần tử của tập hợp G gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau: a) “Học sinh được chọn ra đến từ châu Á”; b) “Học sinh được chọn ra đến từ châu Âu”; c) “Học sinh được chọn ra đến từ châu Mỹ”;

  • Giải bài 2 trang 32 SGK Toán 7 tập 2 - Cánh diều

    Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 51, 52. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tìm số phần tử của tập hợp C gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra. Sau đó, hãy tính xác suất của mỗi biến cố sau: a) “Số xuất hiện trên thẻ được rút ra là số có một chữ số”; b) “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1”; c) “Số xuất hiện trên thẻ được rút r

  • Giải bài 1 trang 32 SGK Toán 7 tập 2 - Cánh diều

    Gieo ngẫu nhiên xúc xắc một lần. Tính xác suất của mỗi biến cố sau: a) “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố”; b) “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1”.

  • Giải mục II trang 31, 32 SGK Toán 7 tập 2 - Cánh diều

    Rút ngẫu nhiên một thẻ trong hộp có 12 chiếc thẻ đã nêu ở Ví dụ 2. Tính xác suất của biến cố “Số xuất hiện trên thẻ rút ra là số không chia hết cho 3”.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close