Giải bài 27 trang 57 sách bài tập toán 12 - Cánh diều

Đường thẳng đi qua điểm (Mleft( {{x_0};{y_0};{z_0}} right)) và vuông góc với mặt phẳng (left( {Oxy} right)) có phương trình tham số là: A. (left{ begin{array}{l}x = {x_0}\y = {y_0}\z = tend{array} right.). B. (left{ begin{array}{l}x = t\y = {y_0}\z = {z_0}end{array} right.). C. (left{ begin{array}{l}x = {x_0}\y = t\z = {z_0}end{array} right.). D. (left{ begin{array}{l}x = {x_0} + t\y = {y_0} + t\z = {z_0} + tend{array} right.).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Đường thẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với mặt phẳng \(\left( {Oxy} \right)\) có phương trình tham số là:

A. \(\left\{ \begin{array}{l}x = {x_0}\\y = {y_0}\\z = t\end{array} \right.\).

B. \(\left\{ \begin{array}{l}x = t\\y = {y_0}\\z = {z_0}\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x = {x_0}\\y = t\\z = {z_0}\end{array} \right.\).

D. \(\left\{ \begin{array}{l}x = {x_0} + t\\y = {y_0} + t\\z = {z_0} + t\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Lời giải chi tiết

Mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {0;0;1} \right)\).

Vậy đường thẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với mặt phẳng \(\left( {Oxy} \right)\) có vectơ chỉ phương \(\overrightarrow n  = \left( {0;0;1} \right)\).

Đường thẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và vuông góc với mặt phẳng \(\left( {Oxy} \right)\) có phương trình tham số là: \(\left\{ \begin{array}{l}x = {x_0}\\y = {y_0}\\z = {z_0} + t\end{array} \right.\).

  • Giải bài 28 trang 57 sách bài tập toán 12 - Cánh diều

    Cho đường thẳng (Delta ) có phương trình tham số (left{ begin{array}{l}x = at\y = bt\z = ctend{array} right.) với ({a^2} + {b^2} + {c^2} > 0). Côsin của góc giữa đường thẳng (Delta ) và trục (Oz) bằng: A. (frac{c}{{sqrt {{a^2} + {b^2} + {c^2}} }}). B. (frac{{left| a right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). C. (frac{{left| b right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). D. (frac{{left| c right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}).

  • Giải bài 29 trang 58 sách bài tập toán 12 - Cánh diều

    Cho đường thẳng (Delta ) có phương trình tham số (left{ begin{array}{l}x = at\y = bt\z = ctend{array} right.) với ({a^2} + {b^2} + {c^2} > 0). Sin của góc giữa đường thẳng (Delta ) và mặt phẳng (left( {Oyz} right)) bằng: A. (frac{{left| {a + b + c} right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). B. (frac{{left| a right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). C. (frac{{left| b right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). D. (frac{{left| c right|}}{{sqrt {{a

  • Giải bài 30 trang 58 sách bài tập toán 12 - Cánh diều

    Cho (a,b) và (c) khác 0, côsin của góc giữa hai mặt phẳng (left( P right):ax + by + c = 0) và (left( Q right):by + cz + d = 0) bằng: A. (frac{{{b^2}}}{{sqrt {left( {{a^2} + {b^2} + {c^2}} right)left( {{b^2} + {c^2} + {d^2}} right)} }}). B. (frac{{left| b right|}}{{sqrt {left( {{a^2} + {b^2}} right)left( {{b^2} + {c^2}} right)} }}). C. (frac{{left| b right|}}{{sqrt {left( {{a^2} + {b^2} + {c^2}} right)left( {{b^2} + {c^2} + {d^2}} right)} }}). D. (frac{

  • Giải bài 31 trang 58 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho đường thẳng (Delta :frac{{x + 2024}}{2} = frac{{y + 2025}}{3} = frac{{z + 2026}}{6}) và mặt phẳng (left( P right):x - 2y - 2{rm{z}} + 1 = 0). Gọi (alpha ) là góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)). a) Vectơ (overrightarrow u = left( {2024;2025;2026} right)) là một vectơ chỉ phương của đường thẳng (Delta ). b) Vectơ có toạ độ (left( {1;2;2} right)) là một vectơ pháp tu

  • Giải bài 32 trang 59 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):2x - 3y - 6z + 7 = 0,left( {{P_2}} right):2x + 2y + z + 8 = 0). Gọi (alpha ) là góc giữa hai mặt phẳng (left( {{P_1}} right)) và (left( {{P_2}} right)). a) Vectơ (overrightarrow n = left( {2; - 3; - 6} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ có toạ độ (left( {2; - 2;1} right)) là một vectơ pháp tuyến của mặt phẳng (

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close