Giải bài 32 trang 59 sách bài tập toán 12 - Cánh diều

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):2x - 3y - 6z + 7 = 0,left( {{P_2}} right):2x + 2y + z + 8 = 0). Gọi (alpha ) là góc giữa hai mặt phẳng (left( {{P_1}} right)) và (left( {{P_2}} right)). a) Vectơ (overrightarrow n = left( {2; - 3; - 6} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ có toạ độ (left( {2; - 2;1} right)) là một vectơ pháp tuyến của mặt phẳng (

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho hai mặt phẳng \(\left( {{P_1}} \right):2x - 3y - 6z + 7 = 0,\left( {{P_2}} \right):2x + 2y + z + 8 = 0\). Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\).

a) Vectơ \(\overrightarrow n  = \left( {2; - 3; - 6} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\).

b) Vectơ có toạ độ \(\left( {2; - 2;1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\).

c) \(\cos \alpha  = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).

d) \(\alpha  \approx {69^ \circ }\) (làm tròn đến hàng đơn vị của độ).

Phương pháp giải - Xem chi tiết

Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}}  = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:

\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).

Lời giải chi tiết

Mặt phẳng \(\left( {{P_1}} \right):2x - 3y - 6z + 7 = 0\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {2; - 3; - 6} \right)\). Vậy a) đúng.

Mặt phẳng \(\left( {{P_2}} \right):2x + 2y + z + 8 = 0\) có vectơ pháp tuyến \(\overrightarrow {n'}  = \left( {2;2;1} \right)\). Vậy b) sai.

Ta có: \(\cos \alpha  = \cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\). Vậy c) đúng.

\(\cos \alpha  = \cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {2.2 + \left( { - 3} \right).2 + \left( { - 6} \right).1} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{8}{{21}}\).

Suy ra \(\alpha  \approx {68^ \circ }\). Vậy d) sai.

a) Đ.

b) S.

c) Đ.

d) S.

  • Giải bài 33 trang 59 sách bài tập toán 12 - Cánh diều

    Cho đường thẳng \(\Delta \) có phương trình tham số: \(\left\{ \begin{array}{l}x = 2 - 3t\\y = 4 + t\\z = 5 - 2t\end{array} \right.\) (\(t\) là tham số). a) Tìm toạ độ của điểm \(M\) thuộc đường thẳng \(\Delta \), biết \(M\) có hoành độ bằng 5. b) Chứng minh rằng điểm \(N\left( {8;2;9} \right)\) thuộc đường thẳng \(\Delta \). c) Chứng minh rằng điểm \(P\left( { - 1;5;4} \right)\) không thuộc đường thẳng \(\Delta \). Lập phương trình tham số của đường thẳng \(\Delta '\), biết \(\Delta '\) đi

  • Giải bài 34 trang 59 sách bài tập toán 12 - Cánh diều

    Lập phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau: a) \(\Delta \) đi qua điểm \(A\left( {2; - 5;7} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 2;3;4} \right)\); b) \(\Delta \) đi qua hai điểm \(M\left( { - 1;0;4} \right)\) và \(N\left( {2;5;3} \right)\). c) \(\Delta \) đi qua điểm \(B\left( {3;2; - 1} \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x - 5y + 6z - 7 = 0\).

  • Giải bài 35 trang 59 sách bài tập toán 12 - Cánh diều

    Xác định vị trí tương đối của hai đường thẳng ({Delta _1},{Delta _2}) trong mỗi trường hợp sau: a) ({Delta _1}:frac{{x + 7}}{5} = frac{{y - 1}}{{ - 7}} = frac{{z + 2}}{{ - 2}}) và ({Delta _2}:left{ begin{array}{l}x = - 5 - 3t\y = - 10 - 4t\z = 3 + 7tend{array} right.) (với (t) là tham số); b) ({Delta _1}:left{ begin{array}{l}x = - 2 + 5t\y = 1 - t\z = 3tend{array} right.) (với (t) là tham số) và ({Delta _2}:frac{{x + 2}}{4} = frac{{y - 1}}{5} = frac{{z

  • Giải bài 36 trang 60 sách bài tập toán 12 - Cánh diều

    Tính góc giữa hai đường thẳng ({Delta _1},{Delta _2}) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ nếu cần): a) ({Delta _1}:left{ begin{array}{l}x = 3 + 2{t_1}\y = - 2 + {t_1}\z = 0end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = 7 + {t_2}\y = - 3 - {t_2}\z = 2{t_2}end{array} right.) (({t_1},{t_2}) là tham số); b) ({Delta _1}:left{ begin{array}{l}x = 3 + t\y = 5 - 2t\z = 7 - 2tend{array} right.) (với (t) là tham số) và ({

  • Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều

    Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) (Delta :left{ begin{array}{l}x = 18 - sqrt 3 t\y = 11\z = 5 + tend{array} right.) (với (t) là tham số) và (left( P right):x - sqrt 3 y - z - 3 = 0); b) (Delta :frac{{x - 8}}{2} = frac{{y - 7}}{{ - 3}} = frac{{z - 6}}{3}) và (left( P right):3x - 4y + 5z - 6 = 0).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close