Giải bài 32 trang 59 sách bài tập toán 12 - Cánh diềuTrong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):2x - 3y - 6z + 7 = 0,left( {{P_2}} right):2x + 2y + z + 8 = 0). Gọi (alpha ) là góc giữa hai mặt phẳng (left( {{P_1}} right)) và (left( {{P_2}} right)). a) Vectơ (overrightarrow n = left( {2; - 3; - 6} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ có toạ độ (left( {2; - 2;1} right)) là một vectơ pháp tuyến của mặt phẳng ( Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng \(\left( {{P_1}} \right):2x - 3y - 6z + 7 = 0,\left( {{P_2}} \right):2x + 2y + z + 8 = 0\). Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\). a) Vectơ \(\overrightarrow n = \left( {2; - 3; - 6} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\). b) Vectơ có toạ độ \(\left( {2; - 2;1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\). c) \(\cos \alpha = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\). d) \(\alpha \approx {69^ \circ }\) (làm tròn đến hàng đơn vị của độ). Phương pháp giải - Xem chi tiết Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có: \(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\). Lời giải chi tiết Mặt phẳng \(\left( {{P_1}} \right):2x - 3y - 6z + 7 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {2; - 3; - 6} \right)\). Vậy a) đúng. Mặt phẳng \(\left( {{P_2}} \right):2x + 2y + z + 8 = 0\) có vectơ pháp tuyến \(\overrightarrow {n'} = \left( {2;2;1} \right)\). Vậy b) sai. Ta có: \(\cos \alpha = \cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\). Vậy c) đúng. \(\cos \alpha = \cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {2.2 + \left( { - 3} \right).2 + \left( { - 6} \right).1} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{8}{{21}}\). Suy ra \(\alpha \approx {68^ \circ }\). Vậy d) sai. a) Đ. b) S. c) Đ. d) S.
|