Giải bài 26 trang 70 sách bài tập toán 8 – Cánh diềuTìm khẳng định sai: a) Nếu \(\Delta A'B'C'\backsim \Delta ABC\) thì \(\Delta ABC\backsim \Delta A'B'C'\). Đề bài Tìm khẳng định sai: a) Nếu \(\Delta A'B'C'\backsim \Delta ABC\) thì \(\Delta ABC\backsim \Delta A'B'C'\). b) Nếu \(\Delta A''B''C''\backsim \Delta A'B'C'\) và \(\Delta A'B'C'\backsim \Delta ABC\) thì \(\widehat{A}=\widehat{A''},\widehat{B}=\widehat{B''},\widehat{C}=\widehat{C''}\). c) Nếu \(\Delta A'B'C'\backsim \Delta ABC\) thì chu vi tam giác \(ABC\) bằng nửa chu vi tam giác \(A'B'C'\). d) Nếu \(\Delta ABC\backsim \Delta A'B'C'\) thì \(\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{CA}{C'A'}\). Phương pháp giải - Xem chi tiết Dựa vào tính chất của tam giác đồng dạng: - Mỗi tam giác đồng dạng với chính nó Nếu \(\Delta A'B'C'\backsim \Delta ABC\) thì \(\Delta ABC\backsim \Delta A'B'C'\). Nếu \(\Delta A''B''C''\backsim \Delta A'B'C'\) và \(\Delta A'B'C'\backsim \Delta ABC\) thì \(\widehat{A}=\widehat{A''},\widehat{B}=\widehat{B''},\widehat{C}=\widehat{C''}\). - Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho. Lời giải chi tiết Khẳng định sai là c) vì không đủ dữ kiện
|