Giải bài 21 trang 79 sách bài tập toán 8 - Cánh diều

Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao \(SH\). Gọi \(E,F\) lần lượt là trung điểm của \(AB,CD\).

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao \(SH\). Gọi \(E,F\) lần lượt là trung điểm của \(AB,CD\). Kẻ \(EK\) vuông góc với \(SF\) tại \(K\) (Hình 14). Biết \(AB = EF = 13cm,SH = EK\). Tính tổng diện tích các mặt của hình chóp tứ giác đều đó.

 

Phương pháp giải - Xem chi tiết

Áp dụng công thức \({S_{xq}} = \frac{1}{2}.C.d\), trong đó \({S_{xq}}\) là diện tích xung quanh, \(C\) là chu vi đáy, \(d\) là độ dài trung đoạn của hình chóp tứ giác đều. Và công thức tính diện tích tam giác để tính tổng diện tích các mặt của hình chóp tứ giác đều đó.

Lời giải chi tiết

Ta có diện tích của tam giác \(SEF\) bằng:

\(\frac{1}{2}.SH.EF = \frac{1}{2}.EK.SF\)

Mà \(SH = EK\), suy ra \(SF = EF = 13cm\)

Diện tích xung quanh của hình chóp tứ giác đều \(S.ABCD\) là: \(\frac{1}{2}.\left( {13.4} \right).13 = 338\left( {c{m^2}} \right)\)

Diện tích đáy của hình chóp tứ giác đều \(S.ABCD\) là: \({13^2} = 169\left( {c{m^2}} \right)\)

Tổng diện tích các mặt của hình chóp tứ giác đều \(S.ABCD\) là: \(338 + 169 = 507\left( {c{m^2}} \right)\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close