Giải bài 20 trang 95 sách bài tập toán 11 - Cánh diềuCho hình chóp S.ABC có \(SA \bot \left( {ABC} \right).\) Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right).\) Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA. Chứng minh rằng \(SA \bot \left( {MNP} \right).\) Phương pháp giải - Xem chi tiết Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy. Lời giải chi tiết Gọi H, K, I lần lượt là trung điểm của AB, BC, CA. Theo giả thiết ta có: \(\frac{{SM}}{{SH}} = \frac{{SN}}{{SK}} = \frac{{SP}}{{SI}} = \frac{2}{3}.\) Theo định lý Ta-lét: Trong tam giác SHK có \(MN{\rm{ // }}HK,\) trong tam giác SHI có \(MP{\rm{ // }}HI.\) Mà \(HK \subset \left( {ABC} \right),{\rm{ }}HI \subset \left( {ABC} \right)\) nên \(MN{\rm{ // }}\left( {ABC} \right),{\rm{ }}MP{\rm{ // }}\left( {ABC} \right).\)Mà, MN, MP cắt nhau trong mặt phẳng (MNP) nên \(\left( {MNP} \right){\rm{ // }}\left( {ABC} \right).\) Ta lại có, \(SA \bot \left( {ABC} \right).\) Vậy \(SA \bot \left( {MNP} \right).\)
|