Giải bài 20 trang 74 sách bài tập toán 12 - Cánh diều

Cho tam giác (ABC) có (Aleft( {1;3;2} right),Bleft( {2; - 1;1} right)) và (Cleft( {3;1;0} right)). Toạ độ trọng tâm (G) của tam giác (ABC) là: A. (left( {6;3;3} right)). B. (left( {2;1;1} right)). C. (left( {3;frac{3}{2};frac{3}{2}} right)). D. (left( {2;frac{5}{3};1} right)).

Đề bài

Cho tam giác \(ABC\) có \(A\left( {1;3;2} \right),B\left( {2; - 1;1} \right)\) và \(C\left( {3;1;0} \right)\). Toạ độ trọng tâm \(G\) của tam giác \(ABC\) là:

A. \(\left( {6;3;3} \right)\)

B. \(\left( {2;1;1} \right)\)

C. \(\left( {3;\frac{3}{2};\frac{3}{2}} \right)\)

D. \(\left( {2;\frac{5}{3};1} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức toạ độ trọng tâm \(G\) của tam giác \(ABC\):

\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

Lời giải chi tiết

\(G\left( {\frac{{1 + 2 + 3}}{3};\frac{{3 + \left( { - 1} \right) + 1}}{3};\frac{{2 + 1 + 0}}{3}} \right) \Leftrightarrow G\left( {2;1;1} \right)\).

Chọn B.

  • Giải bài 21 trang 74 sách bài tập toán 12 - Cánh diều

    Trong không gian (Oxyz), cho (overrightarrow u = left( {2; - 1;4} right)). Độ dài của vectơ (overrightarrow u ) bằng: A. (sqrt 5 ). B. 5. C. 27. D. (sqrt {21} ).

  • Giải bài 22 trang 74 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho điểm (Aleft( { - 2; - 1;4} right)) và (Bleft( {1; - 3; - 1} right)). Độ dài đoạn thẳng (AB) bằng: A. (sqrt {26} ). B. (sqrt {22} ). C. (sqrt {38} ). D. (sqrt {34} ).

  • Giải bài 23 trang 74 sách bài tập toán 12 - Cánh diều

    Trong không gian với hệ toạ độ (Oxyz), cho (overrightarrow a = left( {0;2;2} right)) và (overrightarrow b = left( {3; - 3;0} right)). Góc giữa hai vectơ (overrightarrow a ) và (overrightarrow b ) bằng A. 9. B. 3. C. 5. D. 4.

  • Giải bài 24 trang 74 sách bài tập toán 12 - Cánh diều

    Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho (Aleft( {1;2; - 1} right),Bleft( {2; - 1;3} right),Cleft( { - 4;7;5} right)). a) Toạ độ của (overrightarrow {AB} = left( {1; - 3;4} right),overrightarrow {AC} = left( { - 5;5;6} right)). b) (AB = left| {overrightarrow {AB} } right| = sqrt {{1^2} + {{left( { - 3} right)}^2} + {4^2}} = sqrt {26} ,AC = left| {overrightarrow {AC} } right| = sqrt {{{left(

  • Giải bài 25 trang 75 sách bài tập toán 12 - Cánh diều

    Cho hai vectơ và (overrightarrow v = left( {1;1;5} right)). Hãy chỉ ra toạ độ của một vectơ (overrightarrow {rm{w}} ) vuông góc với cả hai vectơ (overrightarrow u ) và (overrightarrow v ).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close