Giải bài 2 trang 81 sách bài tập toán 9 - Cánh diều tập 1

Cho tam giác ABC có AB = \(\sqrt 2 \) cm, BC = \(\sqrt 5 \) cm, AC = \(\sqrt 3 \) cm. Tỉnh các tỉ số lượng giác của góc B, từ đó suy ra các tỉ số lượng giác của góc C.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho tam giác ABC có AB = \(\sqrt 2 \) cm, BC = \(\sqrt 5 \) cm, AC = \(\sqrt 3 \) cm. Tỉnh các tỉ số lượng giác của góc B, từ đó suy ra các tỉ số lượng giác của góc C.

Phương pháp giải - Xem chi tiết

Bước 1: Áp dụng định lý Pythagore đảo để chứng minh tam giác vuông.

Bước 2: Áp dụng: Nếu hai góc phụ nhau thì sin góc này bằng cos góc kia, tan góc này bằng cot góc kia.

Lời giải chi tiết

Xét tam giác ABC, ta có: \(A{B^2} + A{C^2} = {\left( {\sqrt 2 } \right)^2} + {\left( {\sqrt 3 } \right)^2} = 5\) và \(B{C^2} = {\left( {\sqrt 5 } \right)^2} = 5\)

Ta thấy \(A{B^2} + A{C^2} = B{C^2}\left( { = 5} \right)\) nên tam giác ABC vuông tại A (định lý Pythagore đảo), do đó góc B và góc C là 2 góc phụ nhau nên:

\(\sin C = \cos B = \frac{{AB}}{{BC}} = \frac{{\sqrt 2 }}{{\sqrt 5 }} = \frac{{\sqrt {10} }}{5}\);

\(\cos C = \sin B = \frac{{AC}}{{BC}} = \frac{{\sqrt 3 }}{{\sqrt 5 }} = \frac{{\sqrt {15} }}{5}\);

\(\tan C = \cot B = \frac{{AB}}{{AC}} = \frac{{\sqrt 2 }}{{\sqrt 3 }} = \frac{{\sqrt 6 }}{3}\);

\(\cot C = \tan B = \frac{{AC}}{{AB}} = \frac{{\sqrt 3 }}{{\sqrt 2 }} = \frac{{\sqrt 6 }}{2}\).

  • Giải bài 3 trang 81 sách bài tập toán 9 - Cánh diều tập 1

    Sử dụng tỉ số lượng giác của hai góc phụ nhau, tính giá trị mỗi biểu thức sau: a) \(\frac{{\sin 39^\circ }}{{\cos 51^\circ }}\) b) \(\cos 37^\circ 30' - \sin 52^\circ 30'\) c) \(\tan 73^\circ - \cot 17^\circ \) d) \(\cot 44^\circ .\cot 46^\circ \)

  • Giải bài 4 trang 82 sách bài tập toán 9 - Cánh diều tập 1

    Sử dụng bảng tỉ số lượng giác của các góc nhọn đặc biệt, tính giá trị của mỗi biểu thức sau: a) \(2sin30^\circ - 2cos{\rm{ }}60^\circ + tan{\rm{ }}45^\circ \) b) \(sin{\rm{ }}45^\circ {\rm{ }} + {\rm{ }}cot{\rm{ }}60^\circ .{\rm{ }}cos{\rm{ }}30^\circ \)

  • Giải bài 5 trang 82 sách bài tập toán 9 - Cánh diều tập 1

    Tính giá trị của mỗi biểu thức sau: a) \(A{\rm{ }} = {\rm{ }}si{n^2}79^\circ + {\rm{ }}co{s^2}79^\circ \) b) \(B = \tan 73^\circ .\tan 37^\circ .\tan 53^\circ .\tan 17^\circ \) c) \(C = {\cos ^2}73^\circ + {\cos ^2}53^\circ + {\cos ^2}17^\circ + {\cos ^2}37^\circ \) d) \(D = \sin 59^\circ + \cos 59^\circ - \sin 31^\circ - \cos 31^\circ \)

  • Giải bài 6 trang 82 sách bài tập toán 9 - Cánh diều tập 1

    Sử dụng máy tính cầm tay để tính các tỉ số lượng giác của mỗi góc sau (làm tròn kết quả đến hàng phần trăm): a) \(47^\circ \) b) \(52^\circ 18'\) c) \(63^\circ 36'\) d) \(60^\circ 27'46''\)

  • Giải bài 7 trang 82 sách bài tập toán 9 - Cánh diều tập 1

    Một đài quan sát không lưu có độ cao là AB = 95 m. Ở một thời điểm nào đó vào ban ngày, Mặt Trời chiếu tạo bóng dài AC = 200 m trên mặt đất. Góc tạo bởi tia sáng Mặt Trời và phương nằm ngang là góc BCA (Hình 5). Tính số đo góc BCA (làm tròn kết quả đến hàng đơn vị của độ).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close