Giải bài 2 trang 52 SGK Toán 10 tập 2 – Cánh diều

Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4 hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4 hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.

a) Tính số phần tử của không gian mẫu.

b) Xác định các biến cố sau:

A: “Tổng các số trên ba tấm bìa bằng 9”;

B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

c) Tính P(A), P(B).

Phương pháp giải - Xem chi tiết

a) Rút ngẫu nhiên đồng thời 3 tấm bìa từ 4 tấm bìa ở trong hộp \( \Rightarrow \)Sử dụng công thức tổ hợp

b) Liệt kê các trường hợp có lợi cho các biến cố

c) Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}}\)

Lời giải chi tiết

a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 3 của 4 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_4^3\) ( phần tử)

b) +) Sự kiện “Tổng các số trên ba tấm bìa bằng 9” tương ứng với biến cố \(A = \left\{ {\left( {4;3;2} \right)} \right\}\)

+) Sự kiện “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp” tương ứng với biến cố \(B = \left\{ {\left( {1;2;3} \right),\left( {2;3;4} \right)} \right\}\)

c) +) Ta có: \(n\left( A \right) = 1\),\(n\left( B \right) = 2\)

+) Vậy xác suất của biến cố A và B là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{4};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

  • Giải bài 3 trang 52 SGK Toán 10 tập 2 – Cánh diều

    Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:

  • Giải bài 4 trang 52 SGK Toán 10 tập 2 – Cánh diều

    Có 10 bông hoa màu trắng, 10 bông hoa màu vàng và 10 bông hoa màu đỏ. Người ta chọn ra 4 bông hoa từ các bông hoa trên. Tính xác suất của biến cố “Bốn bông hoa chọn ra có cả ba màu”.

  • Giải bài 1 trang 52 SGK Toán 10 tập 2 – Cánh diều

    Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5, hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 2 chiếc thẻ từ trong hộp.

  • Giải mục II trang 51 SGK Toán 10 tập 2 - Cánh diều

    Có 15 bông hoa màu trắng và 15 bông hoa màu vàng. Người ta chọn ra đồng thời 10 bông hoa. Tính xác suất của biến cố “Trong 10 bông hoa được chọn ra có ít nhất một bông màu trắng”.

  • Giải mục I trang 46, 47, 48, 49, 50 SGK Toán 10 tập 2 - Cánh diều

    Xét phép thử “Gieo một xúc xắc một lần”, kết quả có thể xảy ra của phép thử là số chấm trên mặt xuất hiện của xúc xắc. Viết tập hợp 2 các kết quả có thể xảy ra của phép thử trên. Có 5 bông hoa màu trắng, 5 bông hoa màu vàng và 6 bông hoa màu đỏ. Người ta chọn ra 4 bông hoa từ các bông hoa trên. Tính xác suất của biến cố “Bốn bông hoa chọn ra có cả ba màu”.

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close