Giải bài 16 trang 75 sách bài tập toán 11 - Cánh diềuCho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Phát biểu nào sau đây là đúng? Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Phát biểu nào sau đây là đúng? A. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to + \infty \), ta có \(f\left( {{x_n}} \right) \to L\) thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\). B. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} < a\) và \({x_n} \to + \infty \), ta có \(f\left( {{x_n}} \right) \to L\) thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\). C. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\), ta có \(f\left( {{x_n}} \right) \to L\) thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\). D. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to L\), ta có \(f\left( {{x_n}} \right) \to + \infty \) thì \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\). Phương pháp giải - Xem chi tiết Sử dụng định nghĩa giới hạn hữu hạn của hàm số tại vô cực. Lời giải chi tiết Định nghĩa giới hạn hữu hạn của hàm số tại vô cực: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(y = f\left( x \right)\) có giới hạn là số \(L\) khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} > a\) và \({x_n} \to + \infty \), ta có \(f\left( {{x_n}} \right) \to L\). Kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\). Đáp án đúng là A.
|