Giải bài 1.47 trang 32 sách bài tập toán 12 - Kết nối tri thức

Doanh thu (R) (USD) từ vệc cho thuê (x) căn hộ có thể được mô hình hóa bằng hàm số (R = 2xleft( {900 + 32x - {x^2}} right)). a) Tìm hàm doanh thu biên. b) Tìm doanh thu biên khi (x = 14) và giải thích ý nghĩa thực tiễn của nó. c) Tìm lượng doanh thu tăng thêm khi số căn hộ cho thuê tăng từ (14) lên (15).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Doanh thu \(R\) (USD) từ vệc cho thuê \(x\) căn hộ có thể được mô hình hóa bằng hàm số

\(R = 2x\left( {900 + 32x - {x^2}} \right)\).

a) Tìm hàm doanh thu biên.

b) Tìm doanh thu biên khi \(x = 14\) và giải thích ý nghĩa thực tiễn của nó.

c) Tìm lượng doanh thu tăng thêm khi số căn hộ cho thuê tăng từ \(14\) lên \(15\).

Phương pháp giải - Xem chi tiết

Ý a: Hàm doanh thu biên là \(R'\).

Ý b: Tính \(R'\left( {14} \right)\), ý nghĩa là doanh thu tăng thêm khi cho thuê một căn hộ nữa.

Ý c: Tính \(R\left( {15} \right) - R\left( {14} \right)\) và so sánh với kết quả ý b.

Lời giải chi tiết

a) Hàm doanh thu biên là \(R' = 1800 + 128x - 6{x^2}\).

b) Hàm doanh thu biên khi \(x = 14\) là \(R'\left( {14} \right) = 1800 + 128 \cdot 14 - 6 \cdot {14^2} = 2416\).

Điều này nghĩa là doanh thu tăng thêm khi cho thuê một căn hộ nữa (tức là cho thuê căn hộ thứ 15) là khoảng \(2416\) USD.

c) Doanh thu khi cho thuê 14 căn hộ là \(R\left( {14} \right) = 2 \cdot 14\left( {900 + 32 \cdot 14 - {{14}^2}} \right) = 32256\) (USD).

Doanh thu khi cho thuê 15 căn hộ là \(R\left( {15} \right) = 2 \cdot 15\left( {900 + 32 \cdot 15 - {{15}^2}} \right) = 34650\) (USD).

Ta có \(R\left( {15} \right) - R\left( {14} \right) = 2394\). Do đó khi số căn hộ cho thuê tăng từ 14 lên 15 thì doanh thu tăng thêm \(2394\) USD, xấp xỉ với mức đã tính ở ý b.

  • Giải bài 1.48 trang 32 sách bài tập toán 12 - Kết nối tri thức

    Một công ty ước tính rằng chi phí (C) (USD) để sản xuất (x) đơn vị sản phẩm có thể được mô hình hóa bằng công thức (C = 800 + 0,04x + 0,0002{x^2}). Tìm mức sản xuất sao cho chi phí trung bình (overline C left( x right) = frac{{Cleft( x right)}}{x}) cho mỗi đơn vị hàng hóa là nhỏ nhất.

  • Giải bài 1.49 trang 32 sách bài tập toán 12 - Kết nối tri thức

    a) Nếu \(C\left( x \right)\) (USD) là chi phí sản xuất \(x\) đơn vị hàng hóa, thì chi phí trung bình cho mỗi đơn vị là \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\). Chứng minh rằng nếu chi phí trung bình là nhỏ nhất thì chi phí biên bằng chi phí trung bình. b) Nếu \(C\left( x \right) = 16000 + 200x + 4{x^{\frac{3}{2}}}\), hãy tìm: (i) Chi phí, chi phí trung bình và chi phí biên khi sản xuất \(100\) đơn vị hàng hóa; (ii) Mức sản xuất mà khi đó sẽ giảm thiểu chi phí trung bì

  • Giải bài 1.50 trang 33 sách bài tập toán 12 - Kết nối tri thức

    a) Chứng tỏ rằng nếu lợi nhuận (Pleft( x right)) là cực đại thì doanh thu biên bằng chi phí biên. b) Cho (Cleft( x right) = 16000 + 500x - 1,6{x^2} + 0,004{x^3}) là hàm chi phí và (pleft( x right) = 1700 - 7x) là hàm cầu. Hãy tìm mức sản xuất sẽ tối đa lợi nhuận.

  • Giải bài 1.46 trang 32 sách bài tập toán 12 - Kết nối tri thức

    Ở ({0^ circ }C), sự mất nhiệt (H) (tính bằng Kcal/m2h, ở đây Kcal là kilocalories và 1 Kcal=1000 calo) từ cơ thể của một người có thể được mô hình hóa bằng công thức (H = 33left( {10sqrt v - v + 10,45} right),) Trong đó (v) là tốc độ gió (tính bằng m/s) (Theo sách Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009). a) Xét tính đơn điệu của hàm số (H) và giải thích ý nghĩa thực tiễn của kết quả nhận được. b) Tìm tốc độ thay đổi của (H) khi (v = 2) m/

  • Giải bài 1.45 trang 32 sách bài tập toán 12 - Kết nối tri thức

    Chứng tỏ rẳng một thùng hình trụ có thể tích (V) cố định cần ít vật liệu sản xuất nhất (tức là có diện tích bề mặt nhỏ nhất) khi chiều cao của thùng gấp đôi bán kính đáy.

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close