Giải bài 1.46 trang 32 sách bài tập toán 12 - Kết nối tri thứcỞ ({0^ circ }C), sự mất nhiệt (H) (tính bằng Kcal/m2h, ở đây Kcal là kilocalories và 1 Kcal=1000 calo) từ cơ thể của một người có thể được mô hình hóa bằng công thức (H = 33left( {10sqrt v - v + 10,45} right),) Trong đó (v) là tốc độ gió (tính bằng m/s) (Theo sách Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009). a) Xét tính đơn điệu của hàm số (H) và giải thích ý nghĩa thực tiễn của kết quả nhận được. b) Tìm tốc độ thay đổi của (H) khi (v = 2) m/ Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Ở \({0^ \circ }C\), sự mất nhiệt \(H\) (tính bằng Kcal/m2h, ở đây Kcal là kilocalories và 1 Kcal=1000 calo) từ cơ thể của một người có thể được mô hình hóa bằng công thức \(H = 33\left( {10\sqrt v - v + 10,45} \right),\) Trong đó \(v\) là tốc độ gió (tính bằng m/s) (Theo sách Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009). a) Xét tính đơn điệu của hàm số \(H\) và giải thích ý nghĩa thực tiễn của kết quả nhận được. b) Tìm tốc độ thay đổi của \(H\) khi \(v = 2\) m/s. Giải thích ý nghĩa thực tiễn của kết quả này. Phương pháp giải - Xem chi tiết Ý a: Xét sự biến thiên của hàm số \(H\left( v \right) = 33\left( {10\sqrt v - v + 10,45} \right)\), sau đó nhận xét về mối liên hệ giữa mức nhiệt mất từ cơ thể và tốc độ gió. Ý b: Tính \(H'\left( 2 \right)\), giá trị này là mức nhiệt của cơ thể mất tiếp khi vận tốc gió tăng từ \(2\) m/s lên \(3\) m/s. Lời giải chi tiết a) Xét hàm số \(H\left( v \right) = 33\left( {10\sqrt v - v + 10,45} \right)\). Ta có \(H'\left( v \right) = 33\left( {\frac{5}{{\sqrt v }} - 1} \right),{\rm{ v > }}0\). Khi đó \(H'\left( v \right) = 0 \Leftrightarrow 33\left( {\frac{5}{{\sqrt v }} - 1} \right) = 0 \Leftrightarrow v = 25\). Lập bảng biến thiên: Từ bảng biến thiên suy ra \(H\) đồng biến trên khoảng \(\left( {25; + \infty } \right)\), nghịch biến trên khoảng \(\left( {0;25} \right)\) Do đó, mức nhiệt mất từ cơ thể tăng khi tốc độ gió tăng không vượt quá 25 m/s, đạt tối đa ở mức gió 25 m/s và sau đó giảm dần khi tốc độ gió tiếp tục tăng. b) Ta có \(H'\left( 2 \right) = 33\left( {\frac{5}{{\sqrt 2 }} - 1} \right) \approx 83,673\). Điều này có nghĩa là mức nhiệt của cơ thể mất tiếp khi vận tốc gió tăng từ \(2\) m/s lên \(3\) m/s là khoảng \(83,673\) (Kcal/m2h).
|