Giải bài 1.24 trang 21 SGK Toán 10 tập 1 – Kết nối tri thứcXác định các tập hợp sau: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Cho \(A = \left\{ {x \in \mathbb{N}|\;x < 7} \right\},\) \(\,B = \left\{ {1;2;3;6;7;8} \right\}\). Xác định các tập hợp sau: \(A \cup B,\;A \cap B,\;A\,{\rm{\backslash }}\,B\). Phương pháp giải - Xem chi tiết - Tập hợp gồm các phần tử thuộc cả hai tập hợp A và B gọi là giao của hai tập hợp A và B. Kí hiệu: A ∩ B. - Tập hợp gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp B gọi là hợp của hai tập hợp A và B. Kí hiệu: A ∪ B. - Tập hợp gồm các phần tử thuộc tập hợp A nhưng không thuộc B gọi là hiệu của A và B. Kí hiệu: A ∖ B. Lời giải chi tiết \(A = \left\{ {0;1;2;3;4;5;6} \right\}\). \(\,B = \left\{ {1;2;3;6;7;8} \right\}\). - Vì 1; 2; 3; 6 thuộc cả hai tập hợp A và B nên \(A \cap B = \left\{ {1;2;3;6} \right\}\). - Vì 0; 1; 2; 3; 4; 5; 6; 7; 8 là các phần tử hoặc thuộc A hoặc thuộc B nên \(A \cup B = \left\{ {0;1;2;3;4;5;6;7;8} \right\} = \left\{ {x \in \mathbb{N}|\;x < 9} \right\}\). - Vì 0; 4; 5 thuộc A nhưng không thuộc B nên \(A\;{\rm{\backslash }}\;B = \left\{ {0;4;5} \right\}\).
|