Giải bài 12 trang 12 sách bài tập toán 8 - Cánh diều

Chứng minh rằng biểu thức (P = left( {2y - x} right)left( {x + y} right) + xleft( {y - x} right) - 2yleft( {x + 5y} right) - 1)

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Chứng minh rằng biểu thức \(P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).

Phương pháp giải - Xem chi tiết

Áp dụng các phương pháp cộng, trừ, nhân, chia đa thức để rút gọn biểu thức sau đó chứng minh biểu thức luôn nhận giá trị âm.

Lời giải chi tiết

Ta có:

 \(\begin{array}{l}P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\\ = 2xy + 2{y^2} - {x^2} - xy + xy - {x^2} - 2xy - 10{y^2} - 1\\ =  - 2{x^2} - 8{y^2} - 1\end{array}\)

Do \({x^2} \ge 0,{y^2} \ge 0\) nên \( - 2{x^2} - 8{y^2} - 1 < 0\) với mọi giá trị của biến \(x,y\).

Vậy \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close