Giải bài 1.16 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thứcHai kì thủ Hoà và Trường thì một trận đấu cờ. Biết rằng thể lệ ở mỗi ván đấu trong trận này không có kết quả hoà. Xác suất thắng của Trưởng trong một văn là 0,4. Trận đấu gồm 7 ván. Người nào thắng một số ván lớn hơn là người thắng cuộc. Tính xác suất để Trường là người thắng cuộc. Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Hoá - Sinh - Sử - Địa Đề bài Hai kì thủ Hoà và Trường thì một trận đấu cờ. Biết rằng thể lệ ở mỗi ván đấu trong trận này không có kết quả hoà. Xác suất thắng của Trưởng trong một văn là 0,4. Trận đấu gồm 7 ván. Người nào thắng một số ván lớn hơn là người thắng cuộc. Tính xác suất để Trường là người thắng cuộc. Phương pháp giải - Xem chi tiết Áp dụng chú ý về phân bố nhị thức. Lời giải chi tiết Gọi \(X\)là số ván thắng của Trường. Khi đó, \(X \sim B(7;0,4)\). Biến cố: “Trường thắng cuộc” là biến cố \(\left\{ {X \ge 4} \right\}\). Khi đó, theo chú ý về phân bố nhị thức ta có: \(\begin{array}{l}P(X \ge 4) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)\\ = C_7^4{.0,4^4}{.0,6^3} + C_7^5{.0,4^5}{.0,6^2} + C_7^6{.0,4^6}{.0,6^3} + {0,4^7} = 0,29.\end{array}\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|