Giải bài 1.10 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thứcTrong một lớp học có 6 bóng đèn hoạt động độc lập với nhau. Mỗi bóng có xác suất bị hỏng là 0,25. Gọi X là số bóng sáng. a) Gọi tên phân bố xác suất biến ngẫu nhiên X. b) Biết rằng lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng. Tính xác suất để lớp học đủ ánh sáng. c) Tính kì vọng, phương sai và độ lệch chuẩn của X. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Trong một lớp học có 6 bóng đèn hoạt động độc lập với nhau. Mỗi bóng có xác suất bị hỏng là 0,25. Gọi X là số bóng sáng. a) Gọi tên phân bố xác suất biến ngẫu nhiên X. b) Biết rằng lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng. Tính xác suất để lớp học đủ ánh sáng. c) Tính kì vọng, phương sai và độ lệch chuẩn của X. Phương pháp giải - Xem chi tiết Áp dụng chú ý về phân bố nhị thức, công thức tính kì vọng, phương sai và độ lệch chuẩn của phân bố nhị thức. Lời giải chi tiết a) X là biến ngẫu nhiên có phân bố nhị thức với \(n = 6;p = 0,75\). b) Lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng tức là \(X \ge 4\). Theo chú ý về phân bố nhị thức ta có: \(\begin{array}{l}P\left( {X \ge 4} \right) = P\left( {X = 4} \right) + P\left( {X = 5} \right) + P\left( {X = 6} \right)\\{\rm{ }} = {\rm{ }}C_6^4.{\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{1}{4}} \right)^2} + C_6^5.{\left( {\frac{3}{4}} \right)^5}.{\left( {\frac{1}{4}} \right)^1} + C_6^6.{\left( {\frac{3}{4}} \right)^6} \approx 0,8306\end{array}\) c) \(X \sim B(6;0,75) \Rightarrow \left\{ \begin{array}{l}E(X) = 6.0,75 = 4,5\\V(X) = 6.0,75.0,25 = 1,125\\\sigma (X) = \sqrt {6.0,75.0,25} = 1,061\end{array} \right.\)
|