Đề số 9 - Đề kiểm tra học kì 2 (Đề thi học kì 2) - Toán 12

Đáp án và lời giải chi tiết Đề số 9 - Đề kiểm tra học kì 2 (Đề thi học kì 2) - Toán học 12

Đề bài

Câu 1: Cho hai số phức \(z = \left( {2x + 1} \right) + \left( {3y - 2} \right)i\), \(z' = \left( {x + 2} \right) + \left( {y + 4} \right)i\). Tìm các số thực \(x,\,\,y\) để \(z = z'.\)

A. \(x = 3,y = 1.\)

B. \(x = 1,y = 3.\)

C. \(x =  - 1,y = 3.\)

D. \(x = 3,y =  - 1.\)

Câu 2: Nguyên hàm của hàm số \(y = x{e^x}\) là:

A. \(x{e^x} + C.\)

B. \(\left( {x + 1} \right){e^x} + C.\)

C. \(\left( {x - 1} \right){e^x} + C.\)

D. \({x^2}{e^x} + C.\)

Câu 3: Trong không gian với hệ tọa độ \(Oxyz\), phương trình mặt phẳng trung trực của đoạn thẳng \(AB\) biết \(A\left( {2;1;4} \right);\) \(B\left( { - 1; - 3; - 5} \right)\) là:

A. \(3x + 4y + 9z + 7 = 0.\)

B. \( - 3x - 4y - 9z + 7 = 0.\)

C. \(3x + 4y + 9z = 0.\)

D. \( - 3x - 4y - 9z + 5 = 0.\)

Câu 4: Số phức liên hợp của số phức \(z = {\left( {\sqrt 3  - 2i} \right)^2}\)là:

A. \(\overline z  =  - 1 + 4\sqrt 3 i\).

B. \(\overline z  =  - 1 - 4\sqrt 3 i\)

C. \(\overline z  = 1 - 4\sqrt 3 i.\)

D. \(\overline z  = 1 + 4\sqrt 3 i.\)

Câu 5: Giá trị của \(\int\limits_0^\pi  {\left( {2\cos x - \sin 2x} \right)dx} \) là:

A. \(1\).                          B. \(0\)

C. \( - 1.\)                        D. \( - 2.\).

Câu 6: Hai điểm biểu diễn số phức \(z = 1 + i\) và \(z' =  - 1 + i\) đối xứng nhau qua:

A. Gốc \(O\)                    B. Điểm\(E\left( {1;1} \right)\).

C. Trục hoành.               D. Trục tung.

Câu 7: Trong không gian với hệ tọa độ \(Oxyz\), cho các vecto \(\overrightarrow a  = \left( {3; - 1; - 2} \right);\) \(\overrightarrow b  = \left( {1;2;m} \right);\) \(\overrightarrow c  = \left( {5;1;7} \right)\). Để \(\overrightarrow c  = \left[ {\overrightarrow a ;\overrightarrow b } \right]\) khi giá trị của \(m\) là:

A. \(m = 0.\)                      B. \(m = 1.\)

 C. \(m =  - 1.\)                   D. \(m = 2.\)

Câu 8: Cho \(\int\limits_0^3 {\left( {x - 3} \right)f'\left( x \right)dx}  = 12\) và \(f\left( 0 \right) = 3\). Khi đó giá trị \(\int\limits_0^3 {f\left( x \right)dx} \) là:

A. \( - 21.\)                      B. \( - 3.\)

C.12.                              D. 9.

Câu 9: Cho số phức \({z_1} = 2 + 6i\) và \({z_2} = 5 - 8i\). Modun của số phức \({\rm{w}} = {z_1}.{z_2}\) là:

A. \(\left| {\rm{w}} \right| = 2\sqrt {601} .\)

B. \(\left| {\rm{w}} \right| = 2\sqrt {610} .\)

C. \(\left| {\rm{w}} \right| = 2\sqrt {980} .\)

D. \(\left| {\rm{w}} \right| = 2\sqrt {890} .\)

Câu 10: Cho \(\int\limits_0^3 {f\left( {{x^2}} \right)xdx = 3} \).Khi đó giá trị của \(\int\limits_0^9 {f\left( x \right)dx} \) là:

A. 6.                               B. 9.

C. 12.                             D. 3.

Câu 11: Trong không gian với hê tọa độ \(Oxyz\), phương trình mặt cầu có đường kính \(AB\) với \(A\left( {4; - 3;7} \right);\) \(B\left( {2;1;3} \right)\) là:

A. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 2} \right)^2} = 36.\)

B. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 5} \right)^2} = 9.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 2} \right)^2} = 36.\)

D. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 5} \right)^2} = 9.\)

Câu 12: Rút gọn biểu thức \(M = {i^{2018}} + {i^{2019}}\) ta được:

A. \(M = 1 + i.\)

B. \(M =  - 1 + i.\)

C. \(M = 1 - i.\)

D. \(M =  - 1 - i.\)

Câu 13: Nguyên hàm của hàm số \(y = x\cos x\) là:

A. \(x\cos x - \sin x + C.\)

B. \(x\cos x + \sin x + C.\)

C. \(x\sin x + c{\rm{os}}x + C.\)

D. \(x\sin x - c{\rm{os}}x + C.\)

Câu 14: Diện tích hình phẳng giới hạn bởi các đồ thị hàm số : \(y = x\sqrt[3]{{1 - x}};\) \(y = 0;\) \(x = 1;\) \(x = 9\) là

A. \(S = \frac{{468}}{7}.\)

B. \(S = \frac{{568}}{{11}}.\)

C. \(S = \frac{{468}}{{11}}.\)

D. \(S = \frac{{467}}{9}.\)

Câu 15: Biết \(\int\limits_1^2 {\frac{{{x^2} + x + 1}}{{x + 1}}dx = a + \ln b} \). Khi đó \(a + b\) bằng.

A. 3.                               B. 4.

C. 0.                               D. 2

Câu 16: Trong không gian với hệ tọa độ Oxyz, bán kính của mặt cầu đi qua bốn điểm \(O\left( {0;0;0} \right);\)

\(A\left( {4;0;0} \right);\) \(B\left( {0;4;0} \right);\) \(C\left( {0;0;4} \right)\) là:

A. \(R = 3\sqrt 3 \)

B. \(R = 4\sqrt 3 \)

C. \(R = \sqrt 3 \)

D. \(R = 2\sqrt 3 \)

Câu 17: Biết \(\int {\frac{{4x - 3}}{{2{x^2} - 3x - 2}}dx} \)\(= \ln \left| {x - a} \right| + b\ln \left| {cx + 1} \right| + C \). Khi đó \(a + b - c\) bằng:

A. 5.                               B. 1.

C. \( - 2.\)                        D. \( - 3.\)

Câu 18: Giá trị \(\int\limits_0^1 {\left( {2x + 2} \right){e^x}dx} \) là:

A. \(3e\).                         B. \(4e\).

C. \(e\).                          D. \(2e\).

Câu 19: Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(M\left( {3;6; - 2} \right)\) và mặt cầu

\(\left( S \right):{x^2} + {y^2} + {z^2} \)\(- 6x - 4y + 2z - 3 = 0\)

Phương trình của mặt phẳng tiếp xúc mặt cầu \(\left( S \right)\) tại \(M\) là:

A. \(4y - z - 26 = 0.\)

B. \(4x - z - 14 = 0.\)

C. \(4x - y - 6 = 0.\)

D. \(y - 4z - 14 = 0.\)

Câu 20: Diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^2} - 2x\) và \(y = x\) là:

A. \(S = \frac{9}{4}.\)          B. \(S = \frac{9}{2}.\)

C. \(S = \frac{{13}}{2}.\)       D. \(S = \frac{{13}}{4}.\)

Câu 21: Để hàm số \(F\left( x \right) = \left( {a\sin x + b\cos x} \right){e^x}\) là một nguyên hàm của hàm số

\(f\left( x \right) = \left( {3\sin x - 2\cos x} \right){e^x}\) thì giá trị \(a + b\) là:

A. \(a + b =  - 2.\)

B. \(a + b = 2.\)

C. \(a + b =  - 3.\)

D. \(a + b = 3.\)

Câu 22: Trong không gian với hệ tọa độ \(Oxyz\), phương trình của đường thẳng \(d\) đi qua điểm

\(A\left( {1; - 2;3} \right);\) \(B\left( {3;0;0} \right)\) là:

A. \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + 2t\\z = 3 + 3t\end{array} \right.\)

B. \(d:\left\{ \begin{array}{l}x = 3 + t\\y =  - 2t\\z = 3t\end{array} \right.\)

C. \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + 2t\\z = 3 - 3t\end{array} \right.\)

D. \(d:\left\{ \begin{array}{l}x = 2 + t\\y = 2 - 2t\\z =  - 3 + 3t\end{array} \right.\)

Câu 23: Biết \(\int\limits_0^1 {\ln \left( {2x + 1} \right)dx = \frac{a}{b}\ln 3 - c} \) với \(a,\,\,b,\,\,c\) là các số nguyên dương. Mệnh đề đúng là:

A. \(a + b = c.\)

B. \(a - b = c.\)

C. \(a + b = 2c.\)

D. \(a - b = 2c.\)

Câu 24: Trong không gian với hệ tọa độ \(Oxyz\), các phương trình dưới đây, phương trình nào là phương trình của một mặt cầu :

A. \({x^2} + {y^2} + {z^2} \)\(+ 4x - 2xy + 6z + 5 = 0.\)

B. \(2{x^2} + 2{y^2} + 2{z^2} \)\(+ 2x + 5y + 6z + 2019 = 0.\)

C. \({x^2} + {y^2} + {z^2} \)\(+ 4x - 2yz - 1 = 0.\)

D. \(2{x^2} + 2{y^2} + 2{z^2} \)\(- 2x + 5y + 6z - 2019 = 0.\)

Câu 25: Cho số phức \(z = 2 - 2\sqrt 3 i\). Khẳng định nào sau đây là khẳng định sai?

A. \(\left| z \right| = 4.\)

B. \(\overline z  = 2 + 2\sqrt 3 i\)

C. \(z = {\left( {\sqrt 3  - i} \right)^2}\)

D. \({z^3} = 64\)

Câu 26: Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường:

\(y = {x^2} - 4x + 4,\) \(y = 0,\) \(x = 0,\) \(x = 3\) xung quanh trục \(Ox\) là:

A. \(V = \frac{{33\pi }}{5}\)   B. \(V = \frac{{33}}{5}\)

C. \(V = \frac{{29\pi }}{4}\)   D. \(V = \frac{{29}}{4}\)

Câu 27: Số phức \(z = \left( {7 - 2i} \right){\left( {1 + 5i} \right)^2}\) có phần ảo là

A. 118i.                          B. 118.

C. \( - 148\)                      D. \( - 148i\)

Câu 28: Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = {x^2};\) \(x = {y^2}\) xung quanh trục \(Ox\) là:

A. \(V = \frac{3}{{10}}\)       B. \(V = \frac{{3\pi }}{{10}}\)

C. \(V = \frac{{10\pi }}{3}\)   D. \(V = \frac{{10}}{3}\)

Câu 29: Trong không gian với hệ tọa độ \(Oxyz\), phương trình của mặt phẳng đi qua 3 điểm

\(A\left( {1;1;1} \right);\) \(B\left( {2;4;5} \right);\) \(C\left( {4;1;2} \right)\) là:

A. \(3x - 11y + 9z - 1 = 0.\)

B. \(3x + 3y - z - 5 = 0\)

C. \(3x + 11y - 9z - 5 = 0\)

D. \(9x + y - 10z = 0\)

Câu 30: Cho \(\int\limits_0^2 {f\left( x \right)dx =  - 3} ,\) \(\int\limits_0^5 {f\left( x \right)dx = 7} \). Khi đó \(\int\limits_2^5 {f\left( x \right)dx} \) bằng:

A. 3.                               B. 4.

C. 7.                               D. 10.

Câu 31: Giải phương trình \({z^2} - 2z + 3 = 0\) trên tậ số phức ta được các nghiệm:

A. \({z_1} = 2 + \sqrt 2 i;\,\,{z_2} = 2 - \sqrt 2 i\)

B. \({z_1} =  - 1 + \sqrt 2 i;\,\,{z_2} =  - 1 - \sqrt 2 i\)

C. \({z_1} =  - 2 + \sqrt 2 i;\,\,{z_2} =  - 2 - \sqrt 2 i\)

D. \({z_1} = 1 + \sqrt 2 i;\,\,{z_2} = 1 - \sqrt 2 i\)

Câu 32: Trong không gian với hệ tọa độ \(Oxyz\) cho mặt cầu có phương trình :

\(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} \)\(- 4mx + 4y + 2mz + {m^2} + 4m = 0.\)

\(\left( {{S_m}} \right)\) là mặt cầu có bán kính nhỏ nhất khi \(m\) là:

A. \(m = 0.\)                                                       B. \(m = \frac{1}{2}.\)

C. \(m =  - 1.\)                  D. \(m =  - \frac{3}{2}.\)

Câu 33: Diện tích \(S\) của hình phẳng giới hạn bởi đồ thị hàm số \(y = 4 - {x^2}\) và trục hoành là:

A. \(S = \frac{{32}}{3}.\)       B. \(S = \frac{{33}}{2}.\)

C. \(S = \frac{{23}}{2}.\)       D. \(S = \frac{{22}}{3}.\)

Câu 34: Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(M\left( {5;3;2} \right)\) và đường thẳng\(\left( d \right):\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{{z + 2}}{3}\). Tọa độ điểm \(H\) là hình chiếu vuông góc của \(M\) trên \(\left( d \right)\) là:

A. \(H\left( {1; - 3; - 2} \right)\)

B. \(H\left( {3;1;4} \right)\)

C. \(H\left( {2; - 1;1} \right)\)

D. \(H\left( {4;3;7} \right)\)

Câu 35: Tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn \(\left| {z + i - 1} \right| = \left| {\overline z  - 2i} \right|\) là:

A.Một đường thẳng.       B.Một đường tròn.

C.Một Parabol.               D. Một Elip.

Câu 36: Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {3; - 3;5} \right)\) và đường thẳng:\(\left( d \right):\frac{{x + 2}}{1} = \frac{y}{3} = \frac{{z - 3}}{4}\). Phương trình của đường thẳng qua \(A\) và song song với \(\left( d \right)\) là

A. \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 3 + 3t\\z = 4 - 5t\end{array} \right.\)

B. \(\left\{ \begin{array}{l}x =  - 3 + t\\y = 3 + 3t\\z =  - 5 + 4t\end{array} \right.\)

C. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 3 - 3t\\z = 4 + 5t\end{array} \right.\)

D. \(\left\{ \begin{array}{l}x = 3 + t\\y =  - 3 + 3t\\z = 5 + 4t\end{array} \right.\)

Câu 37: Diện tích hình phẳng giới hạn bởi các đồ thị hàm số \(y = \sqrt x ;\) \(y = x - 2;\) \(y =  - x\) là

A. \(S = \frac{{11}}{2}.\)       B. \(S = \frac{{11}}{3}.\)

C. \(S = \frac{{13}}{2}.\)       D. \(S = \frac{{13}}{3}.\)

Câu 38: Cho số phức \(z\)  thỏa mãn \(\left| {z + i - 1} \right| = \left| {\overline z  - 2i} \right|\). Giá trị nhỏ nhất \(\left| z \right|\) là:

A. \(\sqrt 2 \)                    B. \(2\sqrt 2 \)

C. \(\frac{{\sqrt 2 }}{2}\)      D. \(\frac{{\sqrt 3 }}{2}\)

Câu 39: Cho hình phẳng giới hạn bởi các dường \(y = \frac{4}{{x - 4}},\) \(y = 0,\) \(x = 0\) và \(x = 2\) quay quanh trục \(Ox\). Thể tích khối tròn xoay tạo thành là:

A. \(V = 4.\)                      B. \(V = 9.\)

C. \(V = 4\pi .\)                 D. \(V = 9\pi .\)

Câu 40: Số phức \(z\) thỏa mãn \(z + 2\overline z  = {\left( {1 + 5i} \right)^2}\) có phần ảo là:

A. \( - 8\)                         B. \( - 8i\)

C. \( - 10\)                       D. \( - 10i\)

Câu 41: Giá trị của \(\int\limits_0^{16} {\frac{{dx}}{{\sqrt {x + 9}  - \sqrt x }}} \) là:

A. 4.                               B. 9.

C. 12.                             D. 15.

Câu 42: Trong không gian với hệ tọa độ \(Oxyz\), cho hai mặt phẳng \(\left( P \right):2x + y - z - 8 = 0\),\(\left( Q \right):3x + 4y - z - 11 = 0\). Gọi \(\left( d \right)\) là giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\), phương trình của đường thẳng \(\left( d \right)\) là:

A. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 - t\\z =  - 5 + 5t\end{array} \right.\)

B. \(\left\{ \begin{array}{l}x = 3 - 3t\\y = t\\z =  - 2 - 5t\end{array} \right.\)

C. \(\left\{ \begin{array}{l}x = 3 + 3t\\y = t\\z =  - 2 + 5t\end{array} \right.\)

D. \(\left\{ \begin{array}{l}x = 3t\\y = 1 + t\\z =  - 7 + 5t\end{array} \right.\)

Câu 43: Nguyên hàm của hàm số \(y = \cot x\) là:

A. \(\ln \left| {\cos x} \right| + C\)

B. \(\ln \left| {\sin x} \right| + C\)

C. \(\sin x + C\)

D. \(\tan x + C\)

Câu 44: Nguyên hàm của hàm số \(y = {\tan ^2}x\)

A. \(\tan x + x + C.\)

B. \( - \tan x - x + C.\)

C. \(\tan x - x + C.\)

D. \( - \tan x + x + C.\)

Câu 45: Trong không gian với hệ tọa độ \(Oxyz\), tâm và bán kính của mặt cầu \(\left( S \right):\)\({x^2} + {y^2} + {z^2} + 4x - 2y + 6z + 5 = 0\) là:

A. \(I\left( { - 2;1; - 3} \right),R = 3\)

B. \(I\left( {2; - 1;3} \right),R = 3\)

C. \(I\left( {4; - 2;6} \right),R = 5\)

D. \(I\left( { - 4;2; - 6} \right),R = 5\)

Câu 46: Giá trị của \(\int\limits_0^\pi  {\sqrt {1 + \cos 2x} dx} \) là:

A. 0.                               B. \(3\sqrt 2 \)

C. \(2\sqrt 2 \)                  D. 1.

Câu 47: Trong không gian với hệ tọa độ \(Oxyz\), cho 3 điểm \(A\left( {0;0;3} \right),\) \(B\left( {1;1;3} \right),\) \(C\left( {0;1;1} \right)\). Khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \(\left( {ABC} \right)\) bằng:

A. 1.                               B. 2.

C. 3.                               D. 4.

Câu 48: Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {2; - 1;0} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z + 2 = 0\). Gọi \(I\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( P \right)\). Phương trình của mặt cầu tâm \(I\) và đi qua \(A\) là:

A. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)

D. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 6.\)

Câu 49: Với số phức \(z\) tùy ý, cho mệnh đề \(\left| { - z} \right| = \left| z \right|;\) \(\left| {\overline z } \right| = \left| z \right|;\) \(\left| {z + \overline z } \right| = 0;\) \(\left| z \right| > 0.\) Số mệnh đề đúng là:

A. 2.                               B. 4.

C. 1.                               D. 3.

Câu 50: Cho số phức \(z = \frac{{m + 3i}}{{1 - i}},\,\,m \in \mathbb{R}\). Số phức \({\rm{w}} = {z^2}\) có \(\left| {\rm{w}} \right| = 9\) khi các giá trị của \(m\) là:

A. \(m =  \pm 1.\)      B. \(m =  \pm 2.\)

C. \(m =  \pm 3.\)    D. \(m =  \pm 4.\)

Lời giải chi tiết

1. B

2. C

3. A

4. A

5. B

6. D

7. C

8. A

9. D

10. A

11. D

12. A

13. C

14. A

15. A

16. D

17. B

18. D

19. A

20. B

21. A

22. C

23. B

24. D

25. D

26. A

27. B

28. B

29. C

30. D

31. D

32. B

33. A

34. B

35. A

36. D

37. D

38. C

39. C

40. C

41. C

42. A

43. B

44. C

45. A

46. A

47. A

48. C

49. A

50. C

Câu 1 (TH)

Phương pháp:

Áp dụng tính chất:

\({z_1} = {a_1} + {b_1}i;{z_2} = {a_2} + {b_2}i\)

\({z_1} = {z_2} \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} = {b_2}\end{array} \right.\)

Cách giải:

Ta có \(\left\{ \begin{array}{l}z = \left( {2x + 1} \right) + \left( {3y - 2} \right)i\\z' = \left( {x + 2} \right) + \left( {y + 4} \right)i\end{array} \right.\)

Để \(z = z'\) thì: \(\left\{ \begin{array}{l}2x + 1 = x + 2\\3y - 2 = y + 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right..\)

Chọn B.

Câu 2 (TH)

Phương pháp:

Sử dụng phương pháp nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Cách giải:

Ta có \(\int {ydx}  = \int {x{e^x}dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = {e^x}\end{array} \right.\)

\(\begin{array}{l} \Rightarrow \int {ydx}  = x{e^x} - \int {{e^x}dx} \\ = x{e^x} - {e^x} + C = \left( {x - 1} \right){e^x} + C.\end{array}\)

Chọn C.

Câu 3 (TH)

Phương pháp:

- Mặt phẳng trung trực của đoạn thẳng \(AB\) đi qua trung điểm của \(AB\) và nhận \(\overrightarrow {AB} \) là 1 VTPT.

- Điểm \(I\) là trung điểm của \(AB\) \( \Rightarrow \left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2}\\{z_I} = \frac{{{z_A} + {z_B}}}{2}\end{array} \right.\).

- Mặt phẳng đi qua \(I\left( {a;b;c} \right)\) có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) có phương trình: \(A\left( {x - a} \right) + B\left( {y - b} \right) + C\left( {z - c} \right) = 0\).

Cách giải:

Gọi \(I\)  là trung điểm của \(AB\) ta có \(I\left( {\frac{1}{2}; - 1; - \frac{1}{2}} \right).\)

Gọi \(\left( P \right)\) là mặt phẳng trung trực của \(AB\). Khi đó \(\left( P \right)\) đi qua trung điểm \(I\left( {\frac{1}{2}; - 1; - \frac{1}{2}} \right)\) của \(AB\) và có 1 vecto pháp tuyến \(\overrightarrow n  = \overrightarrow {BA}  = \left( {3;4;9} \right).\)

Phương trình mặt phẳng \(\left( P \right)\) là:

\(3\left( {x - \frac{1}{2}} \right) + 4\left( {y + 1} \right) + 9\left( {z + \frac{1}{2}} \right) = 0\) \( \Leftrightarrow 3x + 4y + 9z + 7 = 0\)

Chọn A.

Câu 4 (TH)

Phương pháp:

- Khai triển số phức \(z\), đưa số phức \(z\) về dạng \(z = a + bi\).

- Số phức liên hợp của \(z = a + bi\) là \(\overline z  = a - bi\).

Cách giải:

Ta có \(z = {\left( {\sqrt 3  - 2i} \right)^2} =  - 1 - 4\sqrt 3 i\).

Vậy số phức liên hợp của số phức \(z\) là: \(\overline z  =  - 1 + 4\sqrt 3 i.\)

Chọn A.

Câu 5 (NB)

Phương pháp:

Sử dụng các công thức nguyên hàm hàm số lượng giác: \(\int {\sin kxdx}  =  - \frac{1}{k}\cos kx + C\), \(\int {\cos kxdx}  = \frac{1}{k}\sin kx + C\).

Cách giải:

\(\begin{array}{l}\,\,\,\,\,\int\limits_0^\pi  {\left( {2\cos x - \sin 2x} \right)dx} \\ = \left. {\left( {2\sin x + \frac{1}{2}\cos 2x} \right)} \right|_0^\pi \\ = 2\sin \pi  + \frac{1}{2}\cos 2\pi  - 2\sin 0 - \frac{1}{2}\cos 0\\ = \frac{1}{2} - \frac{1}{2} = 0\end{array}\)

Chọn B.

Câu 6 (TH)

Phương pháp:

- Tìm điểm biểu diễn của hai số phức rồi kết luận.

- Điểm biểu diễn số phức \(z = a + bi\) là \(M\left( {a;b} \right)\).

Cách giải:

Ta có \(z = 1 + i\) có điểm biểu diễn là \(M\left( {1;1} \right)\)

\(z' =  - 1 + i\) có điểm biểu diễn là \(M'\left( { - 1;1} \right)\)

Hai điểm \(M\) và \(M'\) đối xứng nhau qua trục \(Oy\).

Chọn D.

Câu 7 (TH)

Phương pháp:

- Tìm tích có hướng của \(\overrightarrow a ;\,\,\overrightarrow b \).

- Tìm điều kiện để hai vectơ bằng nhau.

- Giải hệ phương trình tìm \(m\).

Cách giải:

Ta có \(\overrightarrow a  = \left( {3; - 1; - 2} \right);\overrightarrow b  = \left( {1;2;m} \right)\) \( \Rightarrow \left[ {\overrightarrow a ;\overrightarrow b } \right] = \left( { - m + 4; - 2 - 3m;7} \right)\).

\(\begin{array}{l}\overrightarrow c  = \left[ {\overrightarrow a ;\overrightarrow b } \right]\\ \Rightarrow \left( { - m + 4; - 2 - 3m;7} \right) = \left( {5;1;7} \right)\\ \Rightarrow \left\{ \begin{array}{l} - m + 4 = 5\\ - 2 - 3m = 1\\7 = 7\end{array} \right. \Leftrightarrow m =  - 1\end{array}\)

Chọn C.

Câu 8 (TH)

Phương pháp:

Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Cách giải:

Ta có \(\int\limits_0^3 {\left( {x - 3} \right)f'\left( x \right)dx = 12} \)

Đặt \(\left\{ \begin{array}{l}u = x - 3\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\)

Khi đó

\(\begin{array}{l}12 = \left. {\left( {x - 3} \right)f\left( x \right)} \right|_0^3 - \int\limits_0^3 {f\left( x \right)dx} \\ \Leftrightarrow 12 =  - 3f\left( 0 \right) - \int\limits_0^3 {f\left( x \right)dx} \\ \Leftrightarrow 12 =  - 3.3 - \int\limits_0^3 {f\left( x \right)dx} \\ \Leftrightarrow \int\limits_0^3 {f\left( x \right)dx}  =  - 21.\end{array}\)

Chọn A.

Câu 9 (TH)

Phương pháp:

- Áp dụng công thức tính tích hai số phức.

- Số phức \(z = a + bi\) thì \(\left| z \right| = \sqrt {{a^2} + {b^2}} \).

Cách giải:

Ta có \({\rm{w}} = {z_1}.{z_2} = \left( {2 + 6i} \right)\left( {5 - 8i} \right)\)

\(= 58 + 14i\) (sử dụng MTCT)

\( \Rightarrow \left| {\rm{w}} \right| = \sqrt {{{58}^2} + {{14}^2}}  = 2\sqrt {890} .\)

Chọn D.

Câu 10:

Phương pháp:

- Sử dụng phương pháp đổi biến số.

- Đặt ẩn phụ \(t = {x^2}\), đổi cận.

- Sử dụng tính chất không phụ thuộc vào biến của tích phân: \(\int {f\left( x \right)dx}  = \int {f\left( u \right)du}  = \int {f\left( t \right)dt} ...\)

Cách giải:

Ta có \(\int\limits_0^3 {f\left( {{x^2}} \right)xdx}  = 3\)

Đặt \({x^2} = t\)\( \Rightarrow 2xdx = dt \Leftrightarrow xdx = \frac{1}{2}dt\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 3 \Rightarrow y = 9\end{array} \right.\).

Khi đó \(3 = \frac{1}{2}\int\limits_0^9 {f\left( t \right).dt} \)\( \Rightarrow 6 = \int\limits_0^9 {f\left( t \right)dt}  = \int\limits_0^9 {f\left( x \right)dx} \)

Chọn A.

Câu 11 (TH)

Phương pháp:

- Tìm trung điểm I của AB chính là tâm mặt cầu. Điểm \(I\) là trung điểm của \(AB\) \( \Rightarrow \left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2}\\{z_I} = \frac{{{z_A} + {z_B}}}{2}\end{array} \right.\).

- Tìm bán kính của mặt cầu:

\(R = IA\)\( = \sqrt {{{\left( {{x_A} - {x_I}} \right)}^2} + {{\left( {{y_A} - {y_I}} \right)}^2} + {{\left( {{z_A} - {z_I}} \right)}^2}} \)

- Mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) có phương trình: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Cách giải:

Gọi \(I\) là trung điểm của \(AB\) \( \Rightarrow I\left( {3; - 1;5} \right)\) là tâm mặt cầu đường kính \(AB\).

Bán kính mặt cầu đường kính \(AB\)  là:

\(R = IA\)\( = \sqrt {{{\left( {4 - 3} \right)}^2} + {{\left( { - 3 + 1} \right)}^2} + {{\left( {7 - 5} \right)}^2}}  = 3.\)

Vậy phương trình mặt cầu đường kính \(AB\) là \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 5} \right)^2} = 9.\)

Chọn D.

Câu 12 (TH)

Phương pháp:

Sử dụng \({i^2} =  - 1\).

Cách giải:

\(M = {i^{2018}} + {i^{2019}} = {i^{2018}}\left( {1 + i} \right)\)\( = {\left( {{i^2}} \right)^{1006}}\left( {1 + i} \right) = 1 + i\)

Chọn A.

Câu 13 (TH)

Phương pháp:

Sử dụng phương pháp nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

Cách giải:

Đặt \(\left\{ \begin{array}{l}u = x\\dv = \cos xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = \sin x\end{array} \right.\)

\(\begin{array}{l} \Rightarrow \int {x\cos xdx} \\ = x\sin x - \int {\sin xdx} \\ = x\sin x + \cos x + C\end{array}\)

Chọn C.

Câu 14 (VD)

Phương pháp:

- Xét phương trình hoành độ giao điểm, tìm các nghiệm thuộc \(\left[ {1;9} \right]\).

- Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a,\,\,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

- Sử dụng phương pháp đổi biến, đặt \(t = \sqrt[3]{{1 - x}}.\)

Cách giải:

Xét phương trình hoành độ giao điểm: \(x\sqrt[3]{{1 - x}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \notin \left[ {1;9} \right]\\x = 1\end{array} \right.\).

Diện tích hình phẳng giới hạn bởi các đồ thị hàm số \(y = x\sqrt[3]{{1 - x}};\) \(y = 0;\) \(x = 1;\) \(x = 9\) là: \(S = \int\limits_1^9 {\left| {x\sqrt[3]{{1 - x}}} \right|dx}  = \left| {\int\limits_1^9 {x\sqrt[3]{{1 - x}}dx} } \right|\)

Đặt \(t = \sqrt[3]{{1 - x}} \Leftrightarrow {t^3} = 1 - x\)\( \Leftrightarrow 3{t^2}dt =  - dx.\)

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 0\\x = 9 \Rightarrow t =  - 2\end{array} \right.\).

Khi đó

\(\begin{array}{l}S = \left| { - 3\int\limits_0^{ - 2} {\left( {1 - {t^3}} \right).t.{t^2}dt} } \right|\\ = \left| {3\int\limits_0^{ - 2} {\left( {{t^6} - {t^3}} \right)dt} } \right|\\ = \left| {\left. {3\left( {\frac{{{t^7}}}{7} - \frac{{{t^4}}}{4}} \right)} \right|_0^{ - 2}} \right|\\ = \left| {3\left( { - \frac{{156}}{7}} \right)} \right| = \frac{{468}}{7}\end{array}\)

Chọn A.

Câu 15 (TH)

Phương pháp:

- Chia tử cho mẫu.

- Áp dụng các công thức nguyên hàm cơ bản và mở rộng: \(\int {{x^n}dx}  = \frac{{{x^{n + 1}}}}{{n + 1}} + C\,\,\left( {n \ne  - 1} \right)\), \(\int {\frac{{dx}}{{ax + b}}}  = \frac{1}{a}\ln \left| {ax + b} \right| + C\).

Cách giải:

\(\begin{array}{l}\int\limits_1^2 {\frac{{{x^2} + x + 1}}{{x + 1}}dx}  = \int\limits_1^2 {\left( {x + \frac{1}{{x + 1}}} \right)dx} \\ = \left. {\left( {\frac{{{x^2}}}{2} + \ln \left| {x + 1} \right|} \right)} \right|_1^2\\ = 2 + \ln 3 - \frac{1}{2} - \ln 2\\ = \frac{3}{2} + \ln \frac{3}{2}\end{array}\)

\( \Rightarrow a = b = \frac{3}{2}\)\( \Rightarrow a + b = \frac{3}{2} + \frac{3}{2} = 3.\)

Chọn A.

Câu 16 (TH)

Phương pháp:

- Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu \( \Rightarrow IO = IA = IB = IC\).

- Giải hệ phương trình \(\left\{ \begin{array}{l}IO = IA\\IO = IB\\IO = IC\end{array} \right.\) tìm \(a,\,\,b,\,\,c\). Sử dụng công thức tính độ dài đoạn thẳng:

\(AB = \)\(\sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \)

- Tính bán kính mặt cầu \(R = IO\).

Cách giải:

Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu cân tìm, khi đó ta có \(IO = IA = IB = IC\).

\(\begin{array}{l}\left\{ \begin{array}{l}IO = IA\\IO = IB\\IO = IC\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{a^2} + {b^2} + {c^2} = {\left( {a - 4} \right)^2} + {b^2} + {c^2}\\{a^2} + {b^2} + {c^2} = {a^2} + {\left( {b - 4} \right)^2} + {c^2}\\{a^2} + {b^2} + {c^2} = {a^2} + {b^2} + {\left( {c - 4} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}0 =  - 8a + 16\\0 =  - 8b + 16\\0 =  - 8c + 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 2\\c = 2\end{array} \right.\end{array}\)

Vậy bán kính mặt cầu cần tìm là: \(R = IO = \sqrt {{2^2} + {2^2} + {2^2}} \)\( = 2\sqrt 3 \)

Chọn D.

Câu 17 (VD) 

Phương pháp:

- Phân tích mẫu thành nhân tử.

- Đưa biểu thức dưới dấu tích phân về dạng \(\frac{A}{{x - 2}} + \frac{B}{{2x + 1}}\).

- Sử dụng công thức nguyên hàm mở rộng: \(\int {\frac{{dx}}{{ax + b}}}  = \frac{1}{a}\ln \left| {ax + b} \right| + C\).

- Đồng nhất hệ số tìm \(a,\,\,b,\,\,c\) và tính \(a + b - c\).

Cách giải:

Ta có

\(\begin{array}{l}I = \int {\frac{{4x - 3}}{{2{x^2} - 3x - 2}}dx} \\ = \int {\frac{{2\left( {x - 2} \right) + 2x + 1}}{{\left( {x - 2} \right)\left( {2x + 1} \right)}}dx} \\\,\,\, = \int {\left( {\frac{1}{{x - 2}} + \frac{2}{{2x + 1}}} \right)dx} \\ = \ln \left| {x - 2} \right| + \ln \left| {2x + 1} \right| + C\end{array}\)

Mà \(a = 2;\,\,b = 1;\,\,c = 2.\)

Vậy \(a + b - c = 2 + 1 - 2 = 1.\)

Chọn B.

Câu 18 (TH)

Phương pháp:

Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Cách giải:

Gọi \(I = \int\limits_0^1 {\left( {2x + 2} \right){e^x}dx} .\)

Đặt \(\left\{ \begin{array}{l}u = 2x + 2\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2dx\\v = {e^x}\end{array} \right.\)

Khi đó

\(\begin{array}{l}I = \left. {\left( {2x + 2} \right){e^x}} \right|_0^1 - 2\int\limits_0^1 {{e^x}dx} \\\,\,\,\, = 4e - 2 - \left. {2{e^x}} \right|_0^1\\\,\,\,\, = 4e - 2 - \left( {2e - 2} \right) = 2e.\end{array}\).

Chọn D.

Câu 19 (TH)

Phương pháp:

- Mặt cầu

\(\left( S \right):\,\,{x^2} + {y^2} + {z^2}\)\( - 2ax - 2by -2cz + d = 0\)

có tâm \(I\left( {  a;  b;  c} \right)\).

- Mặt phẳng tiếp xúc với mặt cầu \(\left( S \right)\) tại \(M\) là mặt phẳng có 1 vecto pháp tuyến là \(\overrightarrow {IM} \) và đi qua điểm \(M\).

- Mặt phẳng đi qua \(M\left( {a;b;c} \right)\) có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) có phương trình: \(A\left( {x - a} \right) + B\left( {y - b} \right) + C\left( {z - c} \right) = 0\).

Cách giải:

Mặt cầu \(\left( S \right)\) có tâm là \(I\left( {3;2; - 1} \right).\)

Mà \(M\left( {3;6; - 2} \right) \Rightarrow \overrightarrow {IM}  = \left( {0;4; - 1} \right).\)

Mặt phẳng tiếp xúc với mặt cầu \(\left( S \right)\) tại \(M\) là mặt phẳng có 1 vecto pháp tuyến là \(\overrightarrow {IM} \) và đi qua điểm \(M\) có phương trình:  \(4\left( {y - 6} \right) - \left( {z + 2} \right) = 0\)\( \Leftrightarrow 4y - z - 26 = 0.\)

Chọn A.

Câu 20 (TH)

Phương pháp:

- Tìm hoành độ giao điểm của hai đồ thị hàm số.

- Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a,\,\,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Xét phương trình hoành độ giao điểm: \({x^2} - 2x = x \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right..\)

Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số đã cho là: \(S = \int\limits_0^3 {\left| {{x^2} - 3x} \right|dx} \)\( = \int\limits_0^3 {\left( {3x - {x^2}} \right)dx}  = \frac{9}{2}\)

Chọn B.

Câu 21 (TH)

Phương pháp:

- \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) thì \(F'\left( x \right) = f\left( x \right)\).

- Đồng nhất hệ số tìm \(a,\,\,b\) và tính tổng \(a + b\).

Cách giải:

Vì \(F\left( x \right) = \left( {a\sin x + b\cos x} \right){e^x}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {3\sin x - 2\cos x} \right){e^x}\) nên ta có:

Vậy \(a + b = \frac{1}{2} - \frac{5}{2} =  - 2\).

Chọn A.

Câu 22 (TH)

Phương pháp:

- Đường thẳng đi qua \(A,\,\,B\) nhận \(\overrightarrow {AB} \) là 1 VTCP.

- Phương trình đường thẳng đi qua \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Cách giải:

Ta có \(A\left( {1; - 2;3} \right);B\left( {3;0;0} \right)\)\( \Rightarrow \overrightarrow {AB}  = \left( {2;2; - 3} \right)\)

Phương trình đường thẳng \(d\) đi qua \(A\left( {1; - 2;3} \right)\) và có 1 VTCP \(\overrightarrow u  = \overrightarrow {AB}  = \left( {2;2; - 3} \right)\) là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + 2t\\z = 3 - 3t\end{array} \right.\)

Chọn C.

Câu 23 (TH)

Phương pháp:

- Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

- Đồng nhất hệ số tìm \(a,\,\,b,\,\,c\).

Cách giải:

Gọi \(I = \int\limits_0^1 {\ln \left( {2x + 1} \right)dx} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {2x + 1} \right)\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{2}{{2x + 1}}dx\\v = x\end{array} \right.\)

\(\begin{array}{l} \Rightarrow I = \left. {x\ln \left( {2x + 1} \right)} \right|_0^1 - \int\limits_0^1 {\frac{{2x}}{{2x + 1}}dx} \\ \Rightarrow I = \ln 3 - \int\limits_0^1 {\left( {1 - \frac{1}{{2x + 1}}} \right)dx} \\ \Rightarrow I = \ln 3 - \left. {\left( {x - \frac{1}{2}\ln \left| {2x + 1} \right|} \right)} \right|_0^1\\ \Rightarrow I = \ln 3 - \left( {1 - \frac{1}{2}\ln 3} \right)\\ \Rightarrow I = \frac{3}{2}\ln 3 - 1\\ \Rightarrow a = 3,\,\,b = 2,\,\,c = 1\end{array}\)

Vậy \(a - b = c\).

Chọn B.

Câu 24 (TH)

Phương pháp:

Phương trình mặt cầu có dạng \(a{x^2} + a{y^2} + a{z^2} - 2mx - 2ny - 2tz + d = 0\) thỏa mãn \({\left( {\frac{m}{a}} \right)^2} + {\left( {\frac{n}{a}} \right)^2} + {\left( {\frac{t}{a}} \right)^2} - d > 0.\)

Cách giải:

Loại A, C vì trong phương trình chứa hạng tử \(xy\) và \(yz\).

Loại B vì \({\left( {\frac{{ - 1}}{2}} \right)^2} + {\left( {\frac{{ - 5}}{4}} \right)^2} + {\left( {\frac{{ - 3}}{2}} \right)^2} - 2019 < 0\).

Chọn D.

Câu 25 (TH)

Phương pháp:

- Tính môđun số phức \(z = a + bi\) \( \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} \).

- Số phức \(z = a + bi\) có số phức liên hợp \(\overline z  = a - bi\).

Cách giải:

Ta có \(z = 2 - 2\sqrt 3 i\) \( \Rightarrow {z^3} = {\left( {2 - 2\sqrt 3 i} \right)^3} =  - 64\) nên D sai.

Chọn D.

Câu 26 (VD)

Phương pháp:

- Xét phương trình hoành độ giao điểm, tìm các nghiệm thuộc \(\left[ {0;3} \right]\).

- Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a\), \(x = b\) khi quanh quay trục hoành là: \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).

Cách giải:

Xét phương trình hoành độ giao điểm: \({x^2} - 4x + 4 = 0 \Leftrightarrow x = 2\).

Thể tích khối tròn xoay khi quay hình giới hạn bởi \(y = {x^2} - 4x + 4,\) \(y = 0,\) \(x = 0,\) \(x = 3\) xung quanh trục \(Ox\) là:

\(\begin{array}{l}V = \pi \int\limits_0^3 {\left| {{{\left( {{x^2} - 4x + 4} \right)}^2}} \right|dx} \\ = \pi \left| {\int\limits_0^2 {{{\left( {{x^2} - 4x + 4} \right)}^2}dx} } \right|\\ + \pi \left| {\int\limits_2^3 {{{\left( {{x^2} - 4x + 4} \right)}^2}dx} } \right|\\ = \frac{{32}}{5}\pi  + \frac{1}{5}\pi  = \frac{{33\pi }}{5}\end{array}\)

Chọn A.

Câu 27 (TH)

Phương pháp:

- Nhân khai triển số phức, đưa số phức về dạng \(z = a + bi\).

- Số phức \(z = a + bi\) có phần ảo bằng \(b\).

Cách giải:

Ta có \(z = \left( {7 - 2i} \right){\left( {1 + 5i} \right)^2}\)\( =  - 148 + 118i\)

Vậy số phức đã cho có phần ảo là 118.

Chọn B.

Câu 28 (TH)

Phương pháp:

- Xét phương trình hoành độ giao điểm.

- Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a\), \(x = b\) khi quanh quay trục hoành là: \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).

Cách giải:

Xét phương trình hoành độ giao điểm: \({x^2} =  \pm \sqrt x  \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right..\)

Thể tích khối tròn xoay là \(V = \pi \int\limits_0^1 {\left| {{x^4} - x} \right|dx}  = \frac{{3\pi }}{{10}}.\)

Chọn B.

Câu 29 (TH) 

Phương pháp:

- Mặt phẳng đi qua 3 điểm \(A,\,\,B,\,\,C\) nhận \(\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right]\) là 1 VTPT.

- Mặt phẳng đi qua \(A\left( {a;b;c} \right)\) có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) có phương trình: \(A\left( {x - a} \right) + B\left( {y - b} \right) + C\left( {z - c} \right) = 0\).

Cách giải:

Ta có \(A\left( {1;1;1} \right);B\left( {2;4;5} \right);C\left( {4;1;2} \right)\)\( \Rightarrow \overrightarrow {AB}  = \left( {1;3;4} \right);\overrightarrow {AC}  = \left( {3;0;1} \right)\)

\( \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {3;11; - 9} \right).\)

Mặt phẳng đi qua 3 điểm \(A,\,\,B,\,\,C\) nhận \(\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {3;11; - 9} \right)\) là 1 VTPT có phương trình:

\(3\left( {x - 1} \right) + 11\left( {y - 1} \right) - 9\left( {z - 1} \right) = 0\) \( \Leftrightarrow 3x + 11y - 9z - 5 = 0.\)

Chọn C.

Câu 30 (TH)

Phương pháp:

Sử dụng tính chất tích phân: \(\int\limits_a^b {f\left( x \right)d} x + \int\limits_b^c {f\left( x \right)d} x = \int\limits_a^c {f\left( x \right)d} x\).

Cách giải:

Ta có

\(\begin{array}{l}\int\limits_0^2 {f\left( x \right)dx}  + \int\limits_2^5 {f\left( x \right)dx}  = \int\limits_0^5 {f\left( x \right)dx} \\ \Rightarrow  - 3 + \int\limits_2^5 {f\left( x \right)dx}  = 7\\ \Leftrightarrow \int\limits_2^5 {f\left( x \right)dx}  = 7 - \left( { - 3} \right) = 10.\end{array}\)

Chọn D.

Câu 31 (NB)

Phương pháp:

Sử dụng máy tính bấm nghiệm của phương trình.

Cách giải:

\({z^2} - 2z + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} = 1 + \sqrt 2 i\\{z_2} = 1 - \sqrt 2 i\end{array} \right..\)

Chọn D.

Câu 32 (VD)

Phương pháp:

- Mặt cầu \(\left( S \right):\)\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)  có bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

- Tìm GTNN của biểu thức, đưa về hằng đẳng thức hoặc sử dụng phương pháp hàm số.

Cách giải:

Mặt cầu:

\(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2}\)\( - 4mx + 4y + 2mz + {m^2} + 4m = 0\)

có bán kính

\(\begin{array}{l}R =\\ \sqrt {{{\left( {2m} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - m} \right)}^2} - {m^2} - 4m} \\\,\,\,\,\, = \sqrt {4{m^2} - 4m + 4} \\\,\,\,\,\, = \sqrt {{{\left( {2m - 1} \right)}^2} + 3}  \ge \sqrt 3 \end{array}\)

Vậy mặt cầu \(\left( {{S_m}} \right)\) có bán kính nhỏ nhất \(R = \sqrt 3  \Leftrightarrow 2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\).

Chọn B.

Câu 33 (TH)

Phương pháp:

- Xét phương trình hoành độ giao điểm.

- Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a,\,\,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Hoành độ giao điểm của hàm số với trục hoành là \(4 - {x^2} = 0 \Leftrightarrow x =  \pm 2\)

Diện tích hình phẳng cần tìm là: \(S = \int\limits_{ - 2}^2 {\left| {4 - {x^2}} \right|dx} \)\( = \int\limits_{ - 2}^2 {\left( {4 - {x^2}} \right)dx}  = \frac{{32}}{3}.\)

Chọn A.

Câu 34 (VD)

Phương pháp:

- Tham số hóa tọa độ điểm \(H \in d\) theo ẩn \(t\).

- \(MH \bot d \Rightarrow \overrightarrow {MH} .\overrightarrow {{u_d}}  = 0\) với \(\overrightarrow {{u_d}} \) là 1 VTCP của đường thẳng \(d\).

- Đường thẳng \(d:\,\,\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\).

- Giải phương trình tìm ẩn \(t\), từ đó suy ra tọa độ điểm \(H\).

Cách giải:

Gọi \(H\left( {1 + t;\,\, - 3 + 2t;\,\, - 2 + 3t} \right) \in d.\)

\( \Rightarrow \overrightarrow {MH}  = \left( {t - 4;\,\,2t - 6;\,\,3t - 4} \right)\).

Đường thẳng \(d\) có 1 VTCP là \(\overrightarrow {{u_d}}  = \left( {1;2;3} \right)\).

 Vì \(H\) là hình chiếu vuông góc của \(M\) trên \(d\) nên \(MH \bot d \Rightarrow \overrightarrow {MH} .\overrightarrow {{u_d}}  = 0\).

\(\begin{array}{l} \Rightarrow 1.\left( {t - 4} \right) + 2.\left( {2t - 6} \right) + 3.\left( {3t - 4} \right) = 0\\ \Leftrightarrow 14t - 28 = 0 \Leftrightarrow t = 2.\end{array}\)

Vậy \(H\left( {3;1;4} \right).\)

Chọn B.

Câu 35 (VD)

Phương pháp:

- Đặt \(z = x + yi \Rightarrow \overline z  = x - yi\).

- Thay \(z,\,\,\overline z \) vào phương trình đề bài cho.

- Sử dụng công thức \(\left| {a + bi} \right| = \sqrt {{a^2} + {b^2}} \).

- Bình phương hai vế, tìm mối quan hệ giữa \(x,\,\,y\) và kết luận.

Cách giải:

Đặt \(z = x + yi \Rightarrow \overline z  = x - yi\). Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,\,\left| {z + i - 1} \right| = \left| {\overline z  - 2i} \right|\\ \Leftrightarrow \left| {x + yi + i - 1} \right| = \left| {x - yi - 2z} \right|\\ \Leftrightarrow \left| {x - 1 + \left( {y + 1} \right)i} \right| = \left| {x - \left( {y + 2} \right)i} \right|\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y + 2} \right)^2}\\ \Leftrightarrow {x^2} - 2x + 1 + {y^2} + 2y + 1\\ = {x^2} + {y^2} + 4y + 4\\ \Leftrightarrow 2x + 2y + 2 = 0\\ \Leftrightarrow x + y + 1 = 0\end{array}\)

Vậy tập hợp các điểm biểu diễn số phức \(z\) là đường thẳng có phương trình \(x + y + 1 = 0\).

Chọn A.

Câu 36 (TH)

Phương pháp:

- Đường thẳng \(d'\) song song với đường thẳng \(d\) thì \(\overrightarrow {{u_{d'}}}  = \overrightarrow {{u_d}} \).

- Phương trình đường thẳng đi qua \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Cách giải:

Gọi \(\left( {d'} \right)\) là đường thẳng chứa A và song song với \(\left( d \right)\).

Vì \(d'\parallel d \Rightarrow \overrightarrow {{u_{d'}}}  = \overrightarrow {{u_d}}  = \left( {1;3;4} \right)\).

Vậy phương trình đường thẳng \(d'\) đi qua \(A\left( {3; - 3;5} \right)\) và có  VTCP \(\overrightarrow {{u_{d'}}}  = \left( {1;3;4} \right)\) là: \(\left\{ \begin{array}{l}x = 3 + t\\y =  - 3 + 3t\\z = 5 + 4t\end{array} \right..\)

Chọn D.

Câu 37 (VD)

Phương pháp:

- Vẽ đồ thị hàm số, xác định các giao điểm.

- Chia diện tích cần tính thành các diện tích các hình phẳng giới hạn bởi các đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), \(x = a,\,\,x = b\).

- Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a,\,\,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Cách giải:

Xét các phương trình hoành độ giao điểm:

\(\begin{array}{l} - x = x - 2 \Leftrightarrow x = 1\\x - 2 = \sqrt x  \Leftrightarrow x = 4\end{array}\)

Ta xác định được \({x_A} = 1,\,\,{x_B} = 4\).

Diện tích hình phẳng cần tính bao gồm:

- \({S_1}\): Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt x ,\,\,y =  - x\), \(x = 0,\,\,x = 1\).

\(\begin{array}{l} \Rightarrow {S_1} = \int\limits_0^1 {\left( {\sqrt x  - \left( { - x} \right)} \right)dx} \\ = \left. {\left( {\frac{2}{3}\sqrt {{x^3}}  + \frac{{{x^2}}}{2}} \right)} \right|_0^1\\ = \frac{2}{3} + \frac{1}{2} - 0 = \frac{7}{6}\end{array}\)

- \({S_2}\): Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt x ,\,\,y = x - 2\), \(x = 1,\,\,x = 4\).

\(\begin{array}{l} \Rightarrow {S_1} = \int\limits_1^4 {\left( {\sqrt x  - \left( {x - 2} \right)} \right)dx} \\ = \left. {\left( {\frac{2}{3}\sqrt {{x^3}}  - \frac{{{x^2}}}{2} + 2x} \right)} \right|_1^4\\ = \frac{2}{3}.8 - 8 + 8 - \frac{2}{3} + \frac{1}{2} - 2\\ = \frac{{19}}{6}\end{array}\)

Vậy diện tích cần tính là: \(S = {S_1} + {S_2} = \frac{7}{6} + \frac{{19}}{6} = \frac{{13}}{3}\).

Chọn D.

Câu 38 (VD)

Phương pháp:

- Đặt \(z = x + yi \Rightarrow \overline z  = x - yi\).

- Thay vào giả thiết, tìm quỹ tích các điểm biểu diễn số phức \(z\) là 1 đường thẳng \(d\).

- Khi đó \(\left| z \right|\) nhỏ nhất \( \Leftrightarrow \left| z \right| = d\left( {O;d} \right)\).

- Khoảng cách từ \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(d:\,\,ax + by + c = 0\) là \(d\left( {M;d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c{z_0}} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Cách giải:

Đặt \(z = x + yi \Rightarrow \overline z  = x - yi\)

Khi đó

\(\begin{array}{l}\,\,\,\,\,\left| {z + i - 1} \right| = \left| {\overline z  - 2i} \right|\\ \Leftrightarrow \left| {x + yi + i - 1} \right| = \left| {x - yi - 2i} \right|\\ \Leftrightarrow \left| {\left( {x - 1} \right) + \left( {y + 1} \right)i} \right| = \left| {x - \left( {y + 2} \right)i} \right|\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y + 2} \right)^2}\\ \Leftrightarrow {x^2} - 2x + 1 + {y^2} + 2y + 1\\ = {x^2} + {y^2} + 4y + 4\\ \Leftrightarrow 2x + 2y + 2 = 0\\ \Leftrightarrow x + y + 1 = 0\end{array}\)

Do đó tập hợp các điểm biểu diễn số phức \(z\) là đường thẳng \(\left( d \right):\,\,x + y + 1 = 0\).

Khi đó \(\left| z \right| = OM\) đạt giá trị nhỏ nhất \( \Leftrightarrow OM = d\left( {O;d} \right)\)\( = \frac{{\left| {0 + 0 + 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}\)

Chọn C.

Câu 39 (TH)

Phương pháp:

- Xét phương trình hoành độ giao điểm, tìm các nghiệm thuộc \(\left[ {0;2} \right]\).

- Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), đường thẳng \(x = a\), \(x = b\) khi quanh quay trục hoành là: \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).

Cách giải:

ĐKXĐ: \(x \ne 4\).

Xét phương trình hoành độ giao điểm: \(\frac{4}{{x - 4}} = 0\) (Vô nghiệm).

Thể tích khối tròn xoay cần tìm là: \(V = \pi \int\limits_0^2 {{{\left( {\frac{4}{{x - 4}}} \right)}^2}dx}  = 4\pi .\)

Chọn C.

Câu 40 (VD)

Phương pháp:

- Đặt \(z = x + yi \Rightarrow \overline z  = x - yi\).

- Thay vào giả thiết, đưa phương trình về dạng hai số phức bằng nhau.

- Hai số phức bằng nhau khi và chỉ khi chúng có phần thực bằng nhau và phần ảo bằng nhau.

- Giải hệ phương trình tìm \(x,\,\,y\).

Cách giải:

Đặt \(z = x + yi \Rightarrow \overline z  = x - yi\). Theo bài ra ta có:

\(\begin{array}{l}\,\,\,\,\,\,z + 2\overline z  = {\left( {1 + 5i} \right)^2}\\ \Leftrightarrow x + yi + 2\left( {x - yi} \right) =  - 24 + 10i\\ \Leftrightarrow 3x - yi =  - 24 + 10\\ \Rightarrow \left\{ \begin{array}{l}3x =  - 24\\ - y = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 8\\y =  - 10\end{array} \right.\end{array}\)

Vậy \(z =  - 8 - 10i\) có phần ảo bằng \( - 10\).

Chọn C.

Câu 41 (VD)

Phương pháp:

- Nhân liên hợp.

- Sử dụng công thức nguyên hàm mở rộng: \(\int {\sqrt {ax + b} dx}  = \frac{1}{a}.\frac{{2\sqrt {{{\left( {ax + b} \right)}^3}} }}{3} + C\).

Cách giải:

\(\begin{array}{l}I = \int\limits_0^{16} {\frac{{dx}}{{\sqrt {x + 9}  - \sqrt x }}} \\\,\,\,\,\, = \int\limits_0^{16} {\frac{{\left( {\sqrt {x + 9}  + \sqrt x } \right)dx}}{{x + 9 - x}}} \\\,\,\,\, = \int\limits_0^{16} {\frac{{\left( {\sqrt {x + 9}  + \sqrt x } \right)dx}}{9}} \\\,\,\,\, = \left. {\frac{1}{9}.\frac{2}{3}\left[ {\sqrt {{{\left( {x + 9} \right)}^3}}  + \sqrt {{x^3}} } \right]} \right|_0^{16}\\\,\,\,\, = \frac{2}{{27}}\left( {125 + 64 - 27 - 0} \right) = 12.\end{array}\)

Chọn C.

Câu 42 (VD)

Phương pháp:

- Cho \(x = 0\) và \(y = 0\), tìm hai điểm \(A,\,\,B\) cùng thuộc hai mặt phẳng.

- Viết phương trình đường thẳng giao tuyến là đường thẳng đi qua 2 điểm \(A,\,\,B\).

Cách giải:

Xét hệ phương trình \(\left\{ \begin{array}{l}2x + y - z - 8 = 0\\3x + 4y - z - 11 = 0\end{array} \right.\) là tập hợp các điểm cùng thuộc hai mặt phẳng.

Cho \(x = 0\)\( \Rightarrow \left\{ \begin{array}{l}y - z - 8 = 0\\4y - z - 11 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = 1\\z =  - 7\end{array} \right.\) \( \Rightarrow A\left( {0;1; - 7} \right) \in \left( P \right) \cap \left( Q \right).\)

Cho \(y = 0 \Rightarrow \left\{ \begin{array}{l}2x - z - 8 = 0\\3x - z - 11 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\z =  - 2\end{array} \right.\) \( \Rightarrow B\left( {3;0; - 2} \right) \in \left( P \right) \cap \left( Q \right).\)

Khi đó đường thẳng \(d\) là giao tuyến của \(\left( P \right);\left( Q \right)\) là đường thẳng đi qua \(A,\,\,B\), nhận  \(\overrightarrow {AB}  = \left( {3; - 1;5} \right)\) là 1 VTCP. Do đó chỉ có đáp án A thỏa mãn.

Chọn A.

Câu 43 (TH)

Phương pháp:

- Sử dụng công thức \(\cot x = \frac{{\cos x}}{{\sin x}}\).

- Đặt \(t = \sin x\), sử dụng công thức nguyên hàm cơ bản: \(\int {\frac{{dt}}{t}}  = \ln \left| t \right| + C\).

Cách giải:

\(\int {\cot xdx = \int {\frac{{\cos x}}{{\sin x}}dx} } \)

Đặt \(t = \sin x \Rightarrow dt = \cos xdx\).

Khi đó ta có:

\(\begin{array}{l}\int {\cot xdx = \int {\frac{{\cos x}}{{\sin x}}dx} } \\ = \int {\frac{{dt}}{t}}  = \ln \left| t \right| + C\\ = \ln \left| {\sin x} \right| + C\end{array}\)

Chọn B.

Câu 44 (TH)

Phương pháp:

- Áp dụng \({\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1\).

- Áp dụng công thức tính nguyên hàm: \(\int {\frac{{dx}}{{{{\cos }^2}x}}}  = \tan x + C\), \(\int {{x^n}dx}  = \frac{{{x^{n + 1}}}}{{n + 1}} + C\,\,\left( {n \ne  - 1} \right)\).

Cách giải:

\(\begin{array}{l}\int {{{\tan }^2}x} dx = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} \\ = \tan x - x + C\end{array}\)

Chọn C.

Câu 45 (NB)

Phương pháp:

Mặt cầu \(\left( S \right):\)\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có tâm \(I\left( {a;b;c} \right)\), bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \) (với \({a^2} + {b^2} + {c^2} - d > 0\)).

Cách giải:

Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 2;1; - 3} \right)\) và bán kính \(R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {{\left( { - 3} \right)}^2} - 5}  = 3.\)

Chọn A.

Câu 46 (VD)

Phương pháp:

- Sử dụng công thức nhân đôi: \(\cos 2x = 2{\cos ^2}x - 1.\)

- Nhận xét dấu của biểu thức, phá căn.

- Sử dụng công thức nguyên hàm cơ bản: \(\int {\cos xdx}  = \sin x + C\).

Cách giải:

Ta có

\(\begin{array}{l}I = \int\limits_0^\pi  {\sqrt {1 + \cos 2x} } dx\\ = \int\limits_0^\pi  {\sqrt {2{{\cos }^2}x} dx}  = \int\limits_0^\pi  {\sqrt 2 } \left| {\cos x} \right|dx\end{array}\)

Xét trên \(\left[ {0;\pi } \right]\) ta có: \(\cos x \ge 0 \Leftrightarrow \left| {\cos x} \right| = \cos x\).

Vậy \(I = \int\limits_0^\pi  {\sqrt 2 } \cos xdx = \sqrt 2 \left. {\sin x} \right|_0^\pi  = 0\).

Chọn A.

Câu 47 (VD)

Phương pháp:

- Viết phương trình mặt phẳng \(\left( {ABC} \right)\) đi qua \(A\) và nhận \(\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right]\) là 1 VTPT.

- Mặt phẳng đi qua \(A\left( {a;b;c} \right)\) có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) có phương trình: \(A\left( {x - a} \right) + B\left( {y - b} \right) + C\left( {z - c} \right) = 0\).

- Khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là: \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\) ,

Cách giải:

Ta có

\(\begin{array}{l}A\left( {0;0;3} \right);B\left( {1;1;3} \right);C\left( {0;1;1} \right)\\ \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB}  = \left( {1;1;0} \right)\\\overrightarrow {AC}  = \left( {0;1; - 2} \right)\end{array} \right.\\ \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( { - 2;2;1} \right)\end{array}\)

Khi đó phương trình mặt phẳng \(\left( {ABC} \right)\) đi qua \(A\) và nhận \(\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( { - 2;2;1} \right)\) là 1 VTPT.\( - 2.\left( {x - 0} \right) + 2.\left( {y - 0} \right) + 1.\left( {z - 3} \right) = 0\)\( \Leftrightarrow  - 2x + 2y + z - 3 = 0.\)

Vậy \(d\left( {O;\left( {ABC} \right)} \right) = \frac{{\left| { - 3} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {1^2}} }} = 1\).

Chọn A.

Câu 48 (VD)

Phương pháp:

- Viết phương trình đường thẳng \(IA\) đi qua \(A\) và vuông góc với \(\left( P \right)\).

- Tìm tọa độ điểm \(I = IA \cap \left( P \right)\).

- Mặt cầu tâm \(I\) đi qua \(A\) có bán kính:

\(R = IA\)\( = \sqrt {{{\left( {{x_A} - {x_I}} \right)}^2} + {{\left( {{y_A} - {y_I}} \right)}^2} + {{\left( {{z_A} - {z_I}} \right)}^2}} \)

- Mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) có phương trình \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Cách giải:

Vì \(I\) là hình chiếu của \(A\) lên \(\left( P \right) \Rightarrow IA \bot \left( P \right)\).

\( \Rightarrow \overrightarrow {{u_{IA}}}  = \overrightarrow {{n_P}}  = \left( {1; - 2;1} \right)\) là 1 VTCP của đường thẳng \(IA\).

\( \Rightarrow \) Phương trình đường thẳng \(IA\) là: \(\left\{ \begin{array}{l}x = 2 + t\\y =  - 1 - 2t\\z = t\end{array} \right.\).

Gọi \(I\left( {2 + t; - 1 - 2t;t} \right) \in \left( {IA} \right)\).

Mà \(I\) là hình chiếu của \(A\) lên \(\left( P \right) \Rightarrow I \in \left( P \right)\).

\(\begin{array}{l} \Rightarrow 2 + t - 2.\left( { - 1 - 2t} \right) + t + 2 = 0\\ \Leftrightarrow 6t + 6 = 0 \Leftrightarrow t =  - 1\\ \Rightarrow I\left( {1;1; - 1} \right)\end{array}\)

Khi đó bán kính mặt cầu tâm \(I\) đi qua \(A\) là:

\(R = IA\)\( = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {1 + 1} \right)}^2} + {{\left( { - 1 - 0} \right)}^2}}  \)\(= \sqrt 6 \)

Phương trình mặt cầu tâm \(I\left( {1;1; - 1} \right)\) bán kính \(R = \sqrt 6 \) là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)

Chọn C.

Câu 49 (VD)

Phương pháp:

Đặt \(z = a + bi\), xét từng mệnh đề.

Cách giải:

+) Đặt \(z = a + bi \Rightarrow  - z =  - a - bi.\)

Ta có: \(\left| z \right| = \sqrt {{a^2} + {b^2}} ,\)\(\left| { - z} \right| = \sqrt {{{\left( { - a} \right)}^2} + {{\left( { - b} \right)}^2}} \)

\( \Rightarrow \left| z \right| = \left| { - z} \right|\) là mệnh đề đúng.

+) Đặt \(z = a + bi \Rightarrow \overline z  = a - bi.\)

Ta có: \(\left| z \right| = \sqrt {{a^2} + {b^2}} ,\)\(\left| {\overline z } \right| = \sqrt {{a^2} + {{\left( { - b} \right)}^2}} \)

\( \Rightarrow \left| z \right| = \left| {\overline z } \right|\) là mệnh đề đúng.

+) Đặt \(z = a + bi \Rightarrow \overline z  = a - bi\)\( \Rightarrow z + \overline z  = 2a\)

\( \Rightarrow \left| {z + \overline z } \right| = \left| {2a} \right|\) \( \Rightarrow \left| {z + \overline z } \right| = 0\) là mệnh đề sai.

+) Đặt \(z = a + bi\)\( \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}}  \ge 0\)

\( \Rightarrow \left| z \right| > 0\) là mệnh đề sai.

Vậy có 2 mệnh đề đúng.

Chọn A.

Câu 50 (VD)

Phương pháp:

- Tính \(w = {z^2}\) rồi suy ra \(\left| {\rm{w}} \right|\).

- Giải phương trình tìm \(m\).

Cách giải:

Ta có \(z = \frac{{m + 3i}}{{1 - i}}\).

\(\begin{array}{l} \Rightarrow w = {z^2} = {\left( {\frac{{m + 3i}}{{1 - i}}} \right)^2}\\ \Rightarrow w = \frac{{{m^2} + 6mi - 9}}{{ - 2i}}\\ = \frac{{\left( {{m^2} - 9} \right) + 6mi}}{{ - 2i}}\\ = \frac{{\left( {{m^2} - 9} \right)i + 6m{i^2}}}{{ - 2{i^2}}}\\ = \frac{{\left( {{m^2} - 9} \right)i - 6m}}{2}\\ \Rightarrow \left| w \right| = \frac{{\sqrt {{{\left( {{m^2} - 9} \right)}^2} + 36{m^2}} }}{2}\end{array}\)

Theo bài ra ta có:

\(\begin{array}{l}\left| w \right| = 9 \Leftrightarrow \frac{{\sqrt {{{\left( {{m^2} - 9} \right)}^2} + 36{m^2}} }}{2} = 9\\ \Leftrightarrow \sqrt {{{\left( {{m^2} - 9} \right)}^2} + 36{m^2}}  = 18\\ \Leftrightarrow {\left( {{m^2} - 9} \right)^2} + 36{m^2} = 324\\ \Leftrightarrow {m^4} + 18{m^2} - 243 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{m^2} = 9\\{m^2} =  - 27\,\,\,\left( {ktm} \right)\end{array} \right. \Leftrightarrow m =  \pm 3\end{array}\)

Vậy \(m =  \pm 3\).

Chọn C.

Nguồn: Sưu tầm

HocTot.Nam.Name.Vn

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close