Đề số 10 - Đề kiểm tra học kì 1 - Toán 8

Tải về

Đáp án và lời giải chi tiết Đề số 10 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 8

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

I.  TRẮC NGHIỆM (2 điểm)

Câu 1 :Kết quả của phép tính: \(\left( {{a^2} + 2a + 4} \right)\left( {a - 2} \right)\) là:

A.    \({a^3} - 8\)

B.     \({\left( {a - 2} \right)^3}\)

C.    \({a^3} + 8\)

D.    \({\left( {a + 2} \right)^3}\)

Câu 2 : Kết quả của phép tính: \(\left( { - 2017{x^4}{y^3}} \right):\left( { - {x^3}{y^3}} \right)\) là:

A.    \( - 2017x\)

B.     \(2017x\)

C.    \( - 2017xy\)

D.    \(2017xy\)

Câu 3 : Phân tích đa thức \({x^2} - x - 6\) thành nhân tử được kết quả là:

A.\(\left( {x + 2} \right)\left( {x + 3} \right)\)

B.\(\left( {x - 2} \right)\left( {x + 3} \right)\)

C.\(\left( {x - 2} \right)\left( {x - 3} \right)\)

D.\(\left( {x + 2} \right)\left( {x - 3} \right)\)

Câu 4 : Tập hợp tất cả các giá trị của \(x\) thỏa mãn: \({x^3} =  - x\) là:

A.    \(\left\{ {0;\, - 1} \right\}\)

B.     \(\emptyset \)

C.    \(\left\{ 0 \right\}\)

D.    \(\left\{ {0; \pm 1} \right\}\)

Câu 5 : Hình chữ nhật \(ABC{\rm{D}}\) có \(AB = 6\,cm,\,BC = 4\,cm\). Khi đó, diện tích hình chữ nhật ABCD là:

A.    \(2\,c{m^2}\)

B.     \(10\,c{m^2}\)

C.    \(12\,c{m^2}\)

D.    \(24\,c{m^2}\)

Câu 6 : Số lượng trục đối xứng của hình vuông là:

A.    \(6\)

B.     \(4\)

C.    \(2\)

D.    \(1\)

Câu 7 : Một hình thoi có cạnh bằng \(10\,cm\)và độ dài một đường chéo là \(12\,cm\). Khi đó, độ dài đường chéo còn lại của hình thoi là:

A.    \(16\,cm\)

B.     \(12\,cm\)

C.    \(8\,cm\)

D.    \(4cm\)

Câu 8 : Tứ giác là hình vuông khi tứ giác đó có:

A.    Hai đường chéo bằng nhau và vuông góc với nhau

B.     Bốn cạnh bằng nhau

C.    Bốn cạnh bằng nhau và có một góc vuông

D.    Bốn góc vuông.

II. TỰ LUẬN (8 điểm)

Bài 1 (1,5 điểm)Phân tích các đa thức sau thành nhân tử:

a)\(2x - 4{x^2}\)

b)\(3x\left( {x - 2} \right) - 4x + 8\)

c)\({x^2} - 2xy + {y^2} - 9{{\rm{z}}^2}\)

Bài 2 (1,25 điểm)

a)Tìm số\(m\), biết đa thức \(2{x^3} - 3{x^2} + x + m\)chia hết cho đa thức \(x + 2\)

b)Cho \(P = x - {x^2} - 1\), chứng minh \(P < 0\,\forall \,x\)

Bài 3 (1,25 điểm)Rút gọn các phân thức sau:

a)\(A = \dfrac{{45x\left( {2 - x} \right)}}{{15x{{\left( {x - 2} \right)}^2}}}\)

b)\(B = \dfrac{{{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}}{{{x^2} + 3xy + 2{y^2}}}\)

Bài 4 (3,0 điểm)Cho \(\Delta ABC\) vuông tại \(A\), đường cao \(AH\). Gọi \(M,\,N\) theo thứ tự là chân các đường vuông góc kẻ từ\(H\) đến \(AB,\,AC\). Gọi \(O\) là giao điểm của \(AH\)  và \(MN\),\(K\)là trung điểm của \(CH\)

a)Chứng minh rằng tứ giác \(AMHN\) là hình chữ nhật.

b)Tính số đo \(\angle MNK\)

c)Chứng minh rằng \(BO \bot AK\)

Bài 5 (1,0 điểm)Chứng minh: \({a^4} + {b^4} + {c^4} = 2{\left( {ab + bc + ac} \right)^2}\). Biết rằng \(a + b + c = 0\)

LG trắc nghiệm

Lời giải chi tiết:

I. Trắc nghiệm

Câu 1

Câu 2

Câu 3

Câu 4

A

B

D

C

Câu 5

Câu 6

Câu 7

Câu 8

D

B

A

C

LG bài 1

Lời giải chi tiết:

\(a)\,\,2x - 4{x^2} = 2x\left( {1 - 2x} \right)\)

\(b)\,\,3x\left( {x - 2} \right) - 4x + 8\)

\(= 3x\left( {x - 2} \right) - 4\left( {x - 2} \right) \)

\(= \left( {x - 2} \right)\left( {3x - 4} \right).\)

\(c)\,\,{x^2} - 2xy + {y^2} - 9{{\rm{z}}^2} \)

\(= {\left( {x - y} \right)^2} - {\left( {3{\rm{z}}} \right)^2} \)

\(= \left( {x - y - 3{\rm{z}}} \right)\left( {x - y + 3{\rm{z}}} \right).\)

LG bài 2

Lời giải chi tiết:

a) Ta có:

\( \Rightarrow \left( {2{x^3} - 3{x^2} + x + m} \right) \vdots \left( {x + 2} \right) \Leftrightarrow m - 30 = 0 \Leftrightarrow m = 30\)

Vậy \(m = 30.\)

\(b)\,P = x - {x^2} - 1 =  - \left( {{x^2} - x + 1} \right) \\\;\;\;=  - \left( {{x^2} - 2.\dfrac{1}{2}.x + \dfrac{1}{4} + \dfrac{3}{4}} \right) \\\;\;\;=  - {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4}\)

Vì \( - {\left( {x - \dfrac{1}{2}} \right)^2} \le 0\,\forall \,x \Rightarrow  - {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4} < 0\,\forall \,x\)

Vậy \(P < 0\) với mọi \(x.\)

LG bài 3

Lời giải chi tiết:

\(a)\,A = \dfrac{{45x\left( {2 - x} \right)}}{{15x{{\left( {x - 2} \right)}^2}}} = \dfrac{{3\left( {2 - x} \right)}}{{{{\left( {2 - x} \right)}^2}}} = \dfrac{3}{{2 - x}}.\)

\(\begin{array}{l}b)\,\,B = \dfrac{{{x^3} + 2{x^2}y - x{y^2} - 2{y^3}}}{{{x^2} + 3xy + 2{y^2}}} \\= \dfrac{{\left( {{x^3} + 2{x^2}y} \right) - \left( {x{y^2} + 2{y^3}} \right)}}{{{x^2} + xy + 2xy + 2{y^2}}}\\ = \dfrac{{{x^2}\left( {x + 2y} \right) - {y^2}\left( {x + 2y} \right)}}{{x\left( {x + y} \right) + 2y\left( {x + y} \right)}}\\ = \dfrac{{\left( {x + 2y} \right)\left( {{x^2} - {y^2}} \right)}}{{\left( {x + y} \right)\left( {x + 2y} \right)}}\\ = \dfrac{{\left( {x + 2y} \right)\left( {x + y} \right)\left( {x - y} \right)}}{{\left( {x + y} \right)\left( {x + 2y} \right)}} = x - y.\end{array}\)

LG bài 4

Phương pháp giải:

a)Vì \(M,\,N\) lần lượt là hình chiếu của \(H\) trên \(AB,\,AC\) (gt) nên \( \Rightarrow \angle HNA = \angle HMA = {90^0}\)

Lại có \(\angle MAN = {90^0}\left( {gt} \right) \Rightarrow AMHN\) là hình chữ nhật (dhnb)

b)Xét \({\Delta _v}HNC\) có K là trung điểm của \(HC\left( {gt} \right) \Rightarrow NK\) là đường trung tuyến.

Áp dụng tính chất trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy:

\( \Rightarrow NK = HK = \dfrac{{HC}}{2} \Rightarrow \Delta HKN\) cân tại K (định nghĩa)

\( \Rightarrow \angle KHN = \angle KNH\) (tính chất)

Vì \(AMHN\) là hình chữ nhật (cmt) \( \Rightarrow \angle MNH = \angle AHN\)

Lại có: \(\angle AHN + \angle NHC = {90^0} \)

\(\Rightarrow \angle MNH + \angle HNK = {90^0}\)

\(\Rightarrow \angle MNK = {90^0}\)

c)Xét \(\Delta AHC\) có \(O,\;K\) lần lượt là trung điểm của \(AH,\;\;HC \Rightarrow OK\) là đường trung bình của \(\Delta AHC.\)

\( \Rightarrow OK//AC.\)(tính chất đường trung bình)

Mà \(AC \bot AB = \left\{ A \right\}\;\;\left( {gt} \right) \Rightarrow OK \bot AB.\)

Xét \(\Delta ABK\) có \(AH,\;KO\) là các đường cao cắt nhau tại \(O \Rightarrow O\) là trực tâm của \(\Delta ABK.\)

\( \Rightarrow BO\) là đường cao của \(\Delta ABK \Rightarrow BO \bot AK.\) (đpcm)

LG bài 5

Lời giải chi tiết:

Bài 5.

Ta có:\(a + b + c = 0 \Leftrightarrow a =  - b - c.\)

\(\begin{array}{l} \Rightarrow {a^2} = {\left( {b + c} \right)^2} \Leftrightarrow {a^2} = {b^2} + {c^2} + 2bc\\ \Leftrightarrow {a^2} - {b^2} - {c^2} = 2bc.\\ \Leftrightarrow \left( {{a^2} - {b^2} - {c^2}} \right) = 4{b^2}{c^2}\\ \Leftrightarrow {a^4} + {b^4} + {c^4} - 2{a^2}{b^2} + 2{b^2}{c^2} - 2{a^2}{c^2} = 4{b^2}{c^2}\\ \Leftrightarrow {a^4} + {b^4} + {c^4} = 2{a^2}{b^2} + 2{b^2}{c^2} + 2{a^2}{c^2}\\ \Leftrightarrow {a^4} + {b^4} + {c^4} = 2\left( {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} \right).\end{array}\)

Lại có:

\(\begin{array}{l}\;\;\;{\left( {ab + bc + ca} \right)^2} = {\left( {ab} \right)^2} + {\left( {bc} \right)^2} + {\left( {ca} \right)^2} + 2{a^2}bc + 2a{b^2}c + 2ab{c^2}\\ \Leftrightarrow \;{\left( {ab + bc + ca} \right)^2} = {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} + 2abc\left( {a + b + c} \right)\\ \Leftrightarrow \;{\left( {ab + bc + ca} \right)^2} = {a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}.\\ \Rightarrow {a^4} + {b^4} + {c^4} = 2{\left( {ab + bc + ca} \right)^2}.\;\;\;\left( {dpcm} \right)\end{array}\)

Xem thêm: Lời giải chi tiết Đề kiểm tra học kì 1 (Đề thi học kì 1) môn Toán 8 tại HocTot.Nam.Name.Vn

 HocTot.Nam.Name.Vn

Tải về

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close