Đề kiểm tra 45 phút ( 1 tiết) - Đề số 3 - Chương 1 - Hình học 8

Giải Đề kiểm tra 45 phút ( 1 tiết) - Đề số 3 - Chương 1 - Hình học 8

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD, I là trung điểm của cạnh AB, J là trung điểm của DC.

a) Chứng tỏ AJ = CI. 

b) Chứng tỏ O là trung điểm của đoạn IJ.

Bài 2. Cho hình thoi ABCD có hai dường chéo cắt nhau tại O. Trên tia đối của tia BA lấy điểm E sao cho BE = BA. Nối ED cắt AC tại I và BC ở F.

a) Chứng minh ID = 2IF.

b) Nối EO cắt BC ở G, đường thẳng OF cắt EC ở H. Chứng minh ba điểm A, G, H thẳng hàng.

c) Biết ^BAD=60,AB=a. Tính diện tích hình thoi ABCD theo a.

LG bài 1

Phương pháp giải:

Sử dụng:

Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành

Lời giải chi tiết:

a) I, J lần lượt là trung điểm của AB và CD

AICJ và AI = CJ.

Do đó tứ giác AICJ là hình bình hành

AJ=CI.

b) O là giao điểm hai đường chéo AC và BD nên O là trung điểm của AC. AICJ là hình bình hành (cmt). Do đó đường chéo thứ hai IJ phải qua O hay O là trung điểm của IJ.

LG bài 2

Phương pháp giải:

Sử dụng:

Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành

Định lý Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương các cạnh góc vuông

Lời giải chi tiết:

a) Ta có  BE = BA (gt) mà BACD và BA = CD (gt)

BECDBE=CD.

Do đó BECD là hình bình hành nên F là trung điểm của BC.

Xét ΔBDC có I là trọng tâm ID=2IF.

b) Ta có OF là đường trung bình của ΔBDCOFDC

DCAB nên OFAE. 

Vì O là trung điểm của AC nên H là trung điểm của EC hay AH là trung tuyến của ΔAEC. Mà AH cắt EO tại G nên G là trọng tâm ΔAECA,G,H thẳng hàng.

c) ΔABD cân (AB = AD (gt) có^BAD=60 nên ΔABD đều.

Kẻ BJAD ta có: JA=JD=AD2=a2

BJ=AB2AJ2=a2(a2)2=3a24=a32.

Vậy SABCD=AD.BJ=a.a32=a232.

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close