Đề kiểm tra 15 phút - Đề số 7 - Bài 11 - Chương 1 - Hình học 8Giải Đề kiểm tra 15 phút - Đề số 7 - Bài 11 - Chương 1 - Hình học 8 Đề bài Cho hình chữ nhật ABCD; P, Q lần lượt là trung điểm của BC và AD. Gọi M là giao điểm của AP và BQ, N là giao điểm của CQ và DP. Chứng minh: Tứ giác MPNQ là hình thoi. Phương pháp giải - Xem chi tiết Sử dụng: Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành Hình bình hành có một góc vuông là hình chữ nhật Hình bình hành có hai cạnh kề bằng nhau là hình thoi Lời giải chi tiết Vì ABCD là hình chữ nhật nên \(AD=BC,AB=CD\) và \(AD//BC,AB//CD\) Ta có Q, P lần lượt là trung điểm của AD và BC nên AQ = QD = BP = PC và \(AQ// CP,\;DQ//BP.\) Do đó tứ giác sau là các hình bình hành APCQ, BPDQ \(\Rightarrow AP// CQ\) và \(BQ//DP\) \( \Rightarrow MNPQ\) là hình bình hành Mặt khác tứ giác ABPQ có AQ//BP, AQ=BP nên ABPQ là hình bình hành. Lại có góc A bằng \(90^0\) (do ABCD là hình chữ nhật) nên ABPQ là hình chữ nhật. \( \Rightarrow MQ = MP\) (tính chất hai đường chéo hình chữ nhật) Vậy MPNQ là hình thoi (hình bình hành có hai cạnh kề bằng nhau). HocTot.Nam.Name.Vn
|