Đề kiểm tra 15 phút - Đề số 7 - Bài 10 - Chương 1 - Đại số 6

Giải Đề kiểm tra 15 phút - Đề số 7 - Bài 10 - Chương 1 - Đại số 6

Đề bài

Bài 1. Tìm \(x ∈ \mathbb N\) để \(A = 10 + 100 + 2010 + x\) không chia hết cho 2 

Bài 2. Chia số  tự nhiên n cho 111 có số dư là 74. Hỏi n có chia hết cho 37 hay không?

Bài 3. Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hết cho 6.

Phương pháp giải - Xem chi tiết

Sử dụng: 

+) Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó. 

+) Nếu a > b, a và b đều chia hết cho cùng một số thì hiệu a - b cũng chia hết cho số đó.

+) Nếu trong tổng có một số hạng không chia hết cho số tự nhiên m, còn các số hạng khác đều chia hết cho m thì tổng đó không chia hết cho m.

Lời giải chi tiết

Bài 1. Ta có:

10 ⋮ 2;   100 ⋮ 2;     2010 ⋮ 2.

Vậy A không chia hết cho 2 khi x không chia hết cho 2

⇒ x là số tự nhiên lẻ.

Bài 2. Ta có: n = 111.q + 74 ; q ∈ N

Lại có: 111 = 37.3 ⇒ 111 ⋮ 37;    

74 = 2.37 ⇒ 74 ⋮ 37

Do đó: n = 111.q + 74  chia hết cho 37.

Bài 3. Ta có:

\(\begin{array}{l}
\begin{array}{*{20}{l}}
\begin{array}{l}
{3^{n + 3\;}} + {\rm{ }}{3^{n + 1}}\; + {\rm{ }}{2^{n + 3}}\; + {\rm{ }}{2^{n + 2}}\\
= {3^n}{.3^3} + {3^n}.3 + {2^n}{.2^3} + {2^n}{.2^2}
\end{array}\\
{ = {\rm{ }}{3^n}\;\left( {{3^3}\; + {\rm{ }}3} \right){\rm{ }} + {\rm{ }}{2^n}\;\left( {{2^3}\; + {\rm{ }}{2^2}} \right)}
\end{array}\\
\begin{array}{*{20}{l}}
{ = {\rm{ }}{3^n}.30{\rm{ }} + {\rm{ }}{2^n}.12{\rm{ }}\;\;}\\
{30{\rm{ }} \,\vdots \,{\rm{ }}6\;{\rm{ }} \Rightarrow {\rm{ }}{3^n}.30\;{\rm{ }} \,\vdots \,{\rm{ }}6;}\\
{12{\rm{ }} \,\vdots \,{\rm{ }}6\;{\rm{ }} \Rightarrow {\rm{ }}{2^n}.12{\rm{ }} \,\vdots \,{\rm{ }}6}
\end{array}
\end{array}\)

Vậy \(({3^n}.30{\rm{ }} + {\rm{ }}{2^n}.12{\rm{ }}){\rm{ }} \,\vdots\, {\rm{ }}6\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close