Đề kiểm tra 15 phút - Đề số 4 - Bài 1 - Chương 2 - Hình học 8Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 1 - Chương 2 - Hình học 8 Đề bài Cho hình thoi ABCD có \(\widehat A = {60^ \circ }\). Gọi E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh rằng EBFGDH là lục giác đều. Phương pháp giải - Xem chi tiết Lúc giác đều có 6 cạnh bằng nhau và 6 góc bằng nhau. Lời giải chi tiết \(\Delta ABD\) cân (AB = AD) có \(\widehat A = {60^ \circ }\) (gt) nên \(\Delta ABD\) đều \( \Rightarrow AB = BC = CD = AD = BD\) và EH, FG lần lượt là các đường trung bình của \(\Delta ABD\) và \(\Delta CBD.\) Ta có: \(EH = FG = \dfrac{1 }{2}BD\) Lại có E, F, G, H là các trung điểm của AB, BC, CD, DE nên EB = BF = FG = GD = DH = HE (1) Mặt khác \(\widehat {AEH} = {60^ \circ }(\Delta AEH (đều) \) \(\Rightarrow \widehat {BEH} = {120^ \circ }\) (kề bù) Tương tự ta chứng minh được \(\widehat {BFG} = \widehat {DGF} = \widehat {DHE} = {120^ \circ }\) Hiển nhiên \(\widehat {ABC} = \widehat {ADC} = {120^ \circ }\) (vì \(\widehat A = {60^ \circ }\)) \( \Rightarrow \widehat {BFG} = \widehat {DGF} = \widehat {HDE} = \widehat {EBF}\)\(\, = \widehat {HDG} = {120^ \circ }\) (2) Từ (1) và (2) \( \Rightarrow EBFGDH\) là lục giác đều. HocTot.Nam.Name.Vn
|