Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 3 - Hình học 9Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 3 - Hình học 9 Đề bài Cho tam giác ABC vuông tại A, cạnh BC cố định và I là giao điểm của ba đường phân giác trong. Chứng minh rằng I thuộc cung tròn cố định khi A thay đổi. Hãy chỉ ra cách vẽ cung tròn đó. Phương pháp giải - Xem chi tiết Chứng minh I nằm trên cung chứa góc 135º dựng trên đoạn BC ( trừ B và C) Lời giải chi tiết Ta có : \(\widehat A = 90^\circ \Rightarrow \widehat B + \widehat C = 90^\circ \) \( \Rightarrow {{\widehat B} \over 2} + {{\widehat C} \over 2} = 45^\circ \) Hay \(\widehat {IBC} + \widehat {ICB} = 45^\circ \). Do đó \(\widehat {BIC} = 135^\circ \). Vậy I nằm trên cung chứa góc 135º dựng trên đoạn BC ( trừ B và C). Cách vẽ : − Vẽ đường trung trực d của đoạn BC. − Vẽ tia Bx tạo với BC góc 135º. − Vẽ tia By vuông góc với Bx. − Lấy O là giao điểm của By với d. − Vẽ cung BmC tâm O, bán kính OB sao cho cung này nằm ở nửa mặt phẳng bờ BC không chứa tia Bx. Cung BmC là cung chứa góc 135º dựng trên đoạn BC. − Lấy O’ đối xứng với O qua BC, ta có cung Bm’C. HocTot.Nam.Name.Vn
|