Các mục con
- Bài 1. Lũy thừa với số mũ hữu tỉ
- Bài 2. Lũy thừa với số mũ thực
- Bài 3. Lôgarit
- Bài 4. Số e và loogarit tự nhiên
- Bài 5. Hàm số mũ và hàm số lôgarit
- Bài 6. Hàm số lũy thừa
- Bài 7. Phương trình mũ và lôgarit
- Bài 8. Hệ phương trình mũ và lôgarit
- Bài 9. Bất phương trình mũ và lôgarit
- Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
-
Bài 31 trang 90 SGK Đại số và Giải tích 12 Nâng cao
Biểu thị các lôgarit sau đây theo lôgarit thập phân (rồi cho kết quả bằng máy tính, làm tròn đến chữ số thập phân thứ hai):
Xem lời giải -
Bài 34 trang 92 SGK Đại số và Giải tích 12 Nâng cao
Không dùng bảng số và máy tính, hãy sánh:
Xem lời giải -
Bài 36 trang 93 SGK Đại số và Giải tích 12 Nâng cao
Trong mỗi trường hợp sau, hãy tìm x:
Xem lời giải -
Bài 40 trang 93 SGK Đại số và Giải tích 12 Nâng cao
Số nguyên tố dạng , trong đó p là một số nguyên tố được gọi là số nguyên tố Mec-sen (M.Mersenne, 1588-1648, người Pháp). Ơ-le phát hiện năm 1750. Luy-ca (Lucas Edouard, 1842-1891, người Pháp). Phát hiện năm 1876. được phát hiện năm 1996. Hỏi rằng nếu viết ba số đó trong hệ thập phân thì mỗi số có bao nhiêu chữ số? (Dễ thấy rằng chữ số của bằng chữ số của và để tính chữ số của có thể lấy và để tính chữ số của có thể lấy (xem ví dụ 8)
Xem lời giải