Câu hỏi:

Cho tứ diện \(ABCD\) có trọng tâm \(G\). Chọn mệnh đề đúng?

  • A \(\overrightarrow {AG}  = \dfrac{1}{4}\left( {\overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BD} } \right)\)  
  • B \(\overrightarrow {AG}  = \dfrac{1}{3}\left( {\overrightarrow {BA}  + \overrightarrow {BC}  + \overrightarrow {BD} } \right)\)
  • C \(\overrightarrow {AG}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {CD} } \right)\)                        
  • D \(\overrightarrow {AG}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\)

Phương pháp giải:

Sử dụng công thức ba điểm.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD}  = \overrightarrow {AG}  + \overrightarrow {GB}  + \overrightarrow {AG}  + \overrightarrow {GC}  + \overrightarrow {AG}  + \overrightarrow {GD} \\ = 3\overrightarrow {AG}  + \left( {\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right) = 3\overrightarrow {AG}  - \overrightarrow {GA}  = 4\overrightarrow {AG} \\ \Rightarrow \overrightarrow {AG}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} } \right)\end{array}\)

Chọn D.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay