Nội dung từ Loigiaihay.Com
Câu hỏi:
Cho \(\left( d \right):\,x - 2y - 2 = 0\) và \(\left( E \right):\,\,\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{5} = 1\). \(\left( d \right)\) cắt \(\left( E \right)\) tại \(A,\,\,B\) với \(A\left( {{x_A};{y_A}} \right),\,\,B\left( {{x_B};{y_B}} \right)\). Tính \(P = {x_A} + {x_B} + {y_A} + {y_B}\).
Phương pháp giải:
Lời giải chi tiết:
* Giải hệ \(\left\{ \begin{array}{l}\left( d \right)\\\left( E \right)\end{array} \right.\). Từ \(\left( d \right) \Rightarrow x = 2y + 2\,\,\left( * \right)\). Thay vào \(\left( E \right)\) ta có:
\(5{x^2} + 4{y^2} = 20 \Rightarrow 5{\left( {2y + 2} \right)^2} + 4{y^2} = 20 \Leftrightarrow \left[ \begin{array}{l}y = 0\\y = - \dfrac{5}{3}\end{array} \right.\)
* \(\left[ \begin{array}{l}y = 0 \Rightarrow x = 2 \Rightarrow A\left( {2;0} \right)\\y = - \dfrac{5}{3} \Rightarrow x = - \dfrac{4}{3} \Rightarrow B\left( { - \dfrac{4}{3}; - \dfrac{5}{3}} \right)\end{array} \right. \Rightarrow P = - 1\)
Chọn B.