Câu hỏi:

Tìm các hằng số  a và b sao cho \(\left( {{x^3} + ax + b} \right):\left( {x + 1} \right)\) dư 7 và \(\left( {{x^3} + ax + b} \right):\left( {x - 3} \right)\) dư (- 5)

  • A a = -10; b = 2
  • B a = -10; b = - 2
  • C a = 10; b = 2
  • D a = -10; b = 3

Phương pháp giải:

- Đặt phép chia.

- Để phép chia có dư theo điều kiện đề bài thì số dư cuối cùng phải bằng số dư đề bài cho. Từ đó ta được phương trình thứ nhất.

- Thực hiện tương tự, được phương trình thứ hai. Lập hệ phương trình, giải hệ thu được giá trị của a và b.

Lời giải chi tiết:

Để \({x^3} + ax + b\) chia cho x + 1 dư 7 thì  \(b - a - 1 = 7 \Leftrightarrow  - a + b = 8\;(1)\)

Để \({x^3} + ax + b\) chia cho x - 3 dư - 5 thì  \(b + 3a + 27 = -5 \Leftrightarrow 3a + b =  - 32\;(2)\)

Từ (1) và (2) ta có hệ  \(\left\{ \matrix{- a + b = 8 \hfill \cr 3a + b =  - 32 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{a =  - 10 \hfill \cr  b =  - 2 \hfill \cr}  \right.\)



Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay