Câu hỏi:

Tìm \(x\) biết:

\(a)\left( {x + 2} \right)\left( {x + 3} \right) - \left( {x - 2} \right)\left( {x + 5} \right) = 6\)                     

\(b)\left( {3x + 2} \right)\left( {2x + 9} \right) - \left( {x + 2} \right)\left( {6x + 1} \right) = \left( {x + 1} \right) - \left( {x + 6} \right)\)

  • A \(a) x = 5 \)

    \(b) x = \dfrac{{ - 7}}{6}\)

  • B \(a) x = - 5 \)

    \(b) x = \dfrac{{  7}}{6}\)

  • C \(a) x = - 5 \)

    \(b) x = \dfrac{{ - 7}}{6}\)

  • D \(a) x = 5 \)

    \(b) x = \dfrac{{ 7}}{6}\)


Phương pháp giải:

Lời giải chi tiết:

Hướng dẫn giải chi tiết

 

\(\begin{array}{l}a)\left( {x + 2} \right)(x + 3) - \left( {x - 2} \right)\left( {x + 5} \right) = 6\\ \Leftrightarrow x.x + 3.x + 2.x + 2.3 - x.x - 5.x + 2.x + 2.5 = 6\\ \Leftrightarrow {x^2} + 3x + 2x + 6 - {x^2} - 5x + 2x + 10 = 6\\ \Leftrightarrow 2x + 16 = 6\\ \Leftrightarrow 2x = - 10\\ \Leftrightarrow x = - 5\end{array}\)

\(\begin{array}{l}b)\left( {3x + 2} \right)\left( {2x + 9} \right) - \left( {x + 2} \right)\left( {6x + 1} \right) = (x + 1) - (x + 6)\\ \Leftrightarrow 3x.2x + 9.3x + 2.2x + 2.9 - x.6x - x.1 - 2.6x - 2.1 = x + 1 - x - 6\\ \Leftrightarrow 6{x^2} + 27x + 4x + 18 - 6{x^2} - x - 12x - 2 = - 5\\ \Leftrightarrow 18x + 16 = - 5\\ \Leftrightarrow 18x = - 21\\ \Leftrightarrow x = \dfrac{{ - 7}}{6}\end{array}\)

Chọn C.



Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay