Câu hỏi:

Cho góc \(\alpha \) thỏa \(\cos \alpha  =  - \dfrac{3}{5}\left( {\dfrac{\pi }{2} < \alpha  < \pi } \right)\). Tính các giá trị: \(\sin \alpha ,\tan \alpha ,\cos 2\alpha \)


Phương pháp giải:

Sử dụng công thức: \({\sin ^2}x + {\cos ^2}x = 1;\)\(\cos 2x = 1 - 2{\sin ^2}x\).

Lời giải chi tiết:

\(\begin{array}{l}{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\\ \Rightarrow {\sin ^2}\alpha  = 1 - {\cos ^2}\alpha  = \dfrac{{16}}{{25}}\\ \Rightarrow \left| {\sin \alpha } \right| = \dfrac{4}{5}\\\dfrac{\pi }{2} < \alpha  < \pi  \Rightarrow \sin \alpha  = \dfrac{4}{5}\\ \Rightarrow \tan \alpha  =  - \dfrac{4}{3}\\\cos 2\alpha  = 1 - 2{\sin ^2}\alpha  = \dfrac{{ - 7}}{{25}}\end{array}\)



Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay