Nội dung từ Loigiaihay.Com
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho elip \(\left( E \right):\,\,{\mkern 1mu} {\mkern 1mu} \frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Tiêu cự của elip \(\left( E \right)\)
Phương pháp giải:
Elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) có tiêu cự \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \).
Lời giải chi tiết:
\(\begin{array}{l}\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\\ \Rightarrow {a^2} = 25,\,\,\,{b^2} = 9\\ \Rightarrow {c^2} = {a^2} - {b^2} = 25 - 9 = 16\\ \Rightarrow c = 4\end{array}\)
Vậy tiêu cự là \(2c = 2.4 = 8\).
Chọn B.