Nội dung từ Loigiaihay.Com
Câu hỏi:
Phân tích đa thức \(A = x{\left( {y - z} \right)^3} + y{\left( {z - x} \right)^3} + z{\left( {x - y} \right)^3}\) thành nhân tử
Phương pháp giải:
Giữ hạng tử đầu, khai triển hai hạng tử sau và sử dụng hằng đẳng thức \({A^3} - 3{A^2}B + 3A{B^2} - {B^3} = {\left( {A - B} \right)^3}\) để xuất hiện nhân tử \(y - z\).
Tiếp tục biến đổi liên tiếp, ghép hợp lý tạo các nhân tử \(x - y\,\,;z - x;\,\,x + y + z\).
Lời giải chi tiết:
\(\begin{array}{l}A = x{\left( {y - z} \right)^3} + y{\left( {z - x} \right)^3} + z{\left( {x - y} \right)^3}\\\,\,\,\,\, = x{\left( {y - z} \right)^3} + y\left( {{z^3} - 3{z^2}x + 3z{x^2} - {x^3}} \right) + z\left( {{x^3} - 3{x^2}y + 3x{y^2} - {y^3}} \right)\\\,\,\,\,\, = x{\left( {y - z} \right)^3} + {z^3}y - 3{z^2}xy + 3z{x^2}y - {x^3}y + {x^3}z - 3{x^2}yz + 3x{y^2}z - {y^3}z\\\,\,\,\,\, = x{\left( {y - z} \right)^3} - \left( {{y^3}z - {z^3}y} \right) - \left( {{x^3}y - {x^3}z} \right) + \left( {3x{y^2}z - 3{z^2}xy} \right)\\\,\,\,\,\, = x{\left( {y - z} \right)^3} - yz\left( {{y^2} - {z^2}} \right) - {x^3}\left( {y - z} \right) + 3xyz\left( {y - z} \right)\\\,\,\,\,\, = \left( {y - z} \right)\left[ {x{{\left( {y - z} \right)}^2} - yz\left( {y + z} \right) - {x^3} + 3xyz} \right]\\\,\,\,\,\, = \left( {y - z} \right)\left( {x{y^2} - 2yzx + {z^2}x - {y^2}z - y{z^2} - {x^3} + 3xyz} \right)\\\,\,\,\,\, = \left( {y - z} \right)\left( { - {x^3} + x{y^2} + {z^2}x - y{z^2} + xyz - {y^2}z} \right)\\\,\,\,\,\, = \left( {y - z} \right)\left[ { - x\left( {{x^2} - {y^2}} \right) + {z^2}\left( {x - y} \right) + yz\left( {x - y} \right)} \right]\\\,\,\,\,\, = \left( {y - z} \right)\left( {x - y} \right)\left[ { - x\left( {x + y} \right) + {z^2} + yz} \right]\\\,\,\,\,\, = \left( {y - z} \right)\left( {x - y} \right)\left( {{z^2} - {x^2} + yz - xy} \right)\\\,\,\,\,\, = \left( {y - z} \right)\left( {x - y} \right)\left( {z - x} \right)\left( {z + x + y} \right).\end{array}\)
Chọn B.