Câu hỏi:

Xác định \(a\) để hai đường thẳng \({d_1}:ax + 3y--4 = 0\) và \({d_2}:\left\{ \begin{array}{l}x =  - 1 + t\\y = 3 + 3t\end{array} \right.\) cắt nhau tại một điểm nằm trên trục hoành.

  • A \(a = 1\)            
  • B \(a =  - 1\)                    
  • C \(a = 2\)            
  • D \(a = - 2\)            

Phương pháp giải:

+ Xác định tọa độ \(H\) là giao điểm của \({d_2}\) và trục hoành.

+ Thay tọa độ điểm \(H\) vào \({d_1}\) để xác định \(a.\)

Lời giải chi tiết:

Gọi \(H\left( {{x_H};\,\,{y_H}} \right)\) là giao điểm của \({d_1}\) và \({d_2}\).

+) \(H\left( {{x_H};\,\,{y_H}} \right) \in Ox \Rightarrow {y_H} = 0\)\( \Rightarrow H\left( {{x_H};\,\,0} \right)\)

Ta lại có: \(\left\{ \begin{array}{l}{x_H} =  - 1 + t\\0 = 3 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_H} =  - 1 + t\\t =  - 1\end{array} \right. \Leftrightarrow {x_H} =  - 2\)

Do đó, \(H\left( { - 2;\,\,0} \right).\)

+) Vì \(H\left( { - 2;\,\,0} \right) \in {d_1}:ax + 3y--4 = 0\) nên ta có: \(a.\left( { - 2} \right) + 3.0 - 4 = 0 \Leftrightarrow  - 2a - 4 = 0 \Rightarrow a =  - 2\)

Chọn  D



Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay