Câu hỏi:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{2{x^2} - 3x + 1}}{{x - 1}}\,\,\,khi\,\,x \ne 1\\2a + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1\end{array} \right.\). Tìm giá trị của tham số \(a\) để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\).

  • A

    \(a = 4\)

     
  • B \(a = 2\)
  • C \(a = 0\)
  • D \(a = 3\)

Phương pháp giải:

Hàm số \(f\left( x \right)\) liên tục tại \(x = 1\) khi và chỉ khi hàm số xác định tại \(x = 1\) đồng thời \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).

Lời giải chi tiết:

Hàm số đã cho xác định tại \(x = 1\)

Do đó, để \(f\left( x \right)\) liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)          \(\left( 1 \right)\)

Ta có :     

\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{2{x^2} - 3x + 1}}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x - 1} \right)\left( {2x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {2x - 1} \right) = 1.\) 

\(f\left( 1 \right) = 2a + 1\)

Suy ra \(\left( 1 \right) \Leftrightarrow 2a + 1 = 1 \Leftrightarrow a = 0.\)

Vậy \(a = 0.\)

Chọn C.



Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay