Bài 8 trang 178 SGK Đại số và Giải tích 11

Nêu rõ các bước chứng minh bằng phương pháp quy nạp toán học và cho ví dụ.

Đề bài

Nêu rõ các bước chứng minh bằng phương pháp quy nạp toán học và cho ví dụ.

Video hướng dẫn giải

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

_ Các bước của phương pháp chứng minh quy nạp:

+ B1: Chứng minh bài toán đúng với n=1n=1

+ B2: Giả thiết bài toán đúng với n=kn=k  (gọi là giả thiết quy nạp)

+ B3. Chứng minh bài toán đúng với n=k+1n=k+1

Khi đó kết luận bài toán đúng với mọi nN

_ Ví dụ: Chứng minh rằng: với mọi nN ta có:

12+22+32+...+n2=n(n+1)(2n+1)6(1)

Giải

_ Khi n=1 thì (1) trở thành 12=1(1+1)(2+1)6 đúng.

_ Giả sử (1) đúng khi n=k, tức là:

 12+22+32+....+k2=k(k+1)(2k+1)6

_ Ta chứng minh (1) đúng khi n=k+1, tức là phải chứng minh:

12+22+32+....+(k+1)2=(k+1)(k+2)(2k+3)6

_ Thật vậy :

12+22+32+....+k2+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)k(2k+1)+6(k+1)6=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6

Vậy (1) đúng khi n=k+1.

Kết luận: (1) đúng với nN

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close