Câu 5 trang 50 SGK Hình học 11 Nâng cao

Cho mặt phẳng (P) và ba điểm không thẳng hàng A, B, C cùng nằm ngoài (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA đều cắt mp (P) thì các giao điểm đó thẳng hàng

Đề bài

Cho mặt phẳng (P) và ba điểm không thẳng hàng A, B, C cùng nằm ngoài (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA đều cắt mp (P) thì các giao điểm đó thẳng hàng.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi I, J, K lần lượt là giao điểm của AB, AC, BC với mp(P). A, B, C không thẳng hàng nên có mp(ABC).

Ta có:

I=AB(P){IAB(ABC)I(P)I(ABC)(P)(1)J=AC(P){JAC(ABC)J(P)J(ABC)(P)(2)

Từ (1) và (2)(ABC)(P)=IJ

Lại có,

K=BC(P){KBC(ABC)K(P)K(ABC)(P)=IJ

Vậy I, J, K thẳng hàng.

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close