Câu 4.55 trang 184 sách bài tập Giải tích 12 Nâng cao

Trong mặt phằng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1

Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1 (giả sử đi dọc chu vi đa giác theo ngược chiều kim đồng hồ gặp các đỉnh kế tiếp B, C, D, E). Kí hiệu z1,z2,z3,z4 là các số phức theo thứ tự biểu diễn bởi các điểm B, C, D, E.

LG a

Chứng minh rằng 1,z1,z2,z3,z4 là các nghiệm của phương trình z51=0 và z1+1z1=2cos2π5

Giải chi tiết:

z1=cos2π5+isin2π5,z2=cos4π5+isin4π5

   z3=cos6π5+isin6π5,z4=cos8π5+isin8π5

Từ đó theo công thức Moa-vrơ, 1,z1,z2,z3,z4 là nghiệm các phương trình z51=0 (đó là tất cả các nghiệm vì phương trình có bậc 5).

z1+1z1=z1+ˉz1=2cos2π5

Quảng cáo

Lộ trình SUN 2026

LG b

Viết z51=(z1)(z4+z3+z2+z+1) rồi đưa phương trình z4+z3+z2+z+1=0 về phương trình bậc hai đối với ẩn phụ w=z+1z. Từ đó suy ra cos2π5=1+54

Giải chi tiết:

Với z0,

z4+z3+z2+z+1=z2(z2+1z2+z+1z+1)

=z2((z+1z)2+(z+1z)1)

=z2(w2+w1), trong đó w=z+1z

Phương trình w2+w1=0 có hai nghiệm là 1±52

z1,z2,z3,z4 là bốn nghiệm của phương trình z4+z3+z2+z+1=0 tức là nghiệm của phương trình:

(z+1z)2+(z+1z)1=0z4=ˉz1=1z1,z3=ˉz2=1z2  nên z1+1z1,z2+1z2 là hai nghiệm phân biệt của phương trình w2+w1=0

Từ đó suy ra 2cos2π5=1+52 (còn 2cos4π5=152) để ý rằng cos2π5>0,cos4π5<0 (h.4.14)

             

                               

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close