Câu 3.63 trang 152 sách bài tập Giải tích 12 Nâng cao

Tìm nguyên hàm của các hàm số sau bằng phương pháp biến đổi:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm nguyên hàm của các hàm số sau bằng phương pháp biến đổi:

LG a

\(y = {x^3}{\left( {{x^4} - 1} \right)^2}\)

Giải chi tiết:

\({1 \over 2}{\left( {{x^4} - 1} \right)^3} + C\)                             

Hướng dẫn: Đặt \(u = {x^4} - 1\)

Quảng cáo

Lộ trình SUN 2026

LG b

\(y = {{9{x^2}} \over {\sqrt {1 - {x^3}} }}\)

Giải chi tiết:

\( - 6{\left( {1 - {x^3}} \right)^{{1 \over 2}}} + C\)

Hướng dẫn: Đặt \(u = 1 - {x^3}\)

LG c

\(y = {{18{{\tan }^2}x} \over {\left( {2 + {{\tan }^3}x} \right){\rm{co}}{{\rm{s}}^2}x}}\)

Giải chi tiết:

\( - {6 \over {{{\tan }^3}x + 2}} + C\)                    

Hướng dẫn: Đặt \(u = {\tan ^3}x + 2\)

LG d

\(y = \sqrt {1 + {{\sin }^2}\left( {x - 1} \right)} \sin \left( {x - 1} \right){\rm{cos}}\left( {x - 1} \right)\)

Giải chi tiết:

\({1 \over 3}\left[ {1 + {{\sin }^2}{{\left( {x - 1} \right)}^{{3 \over 2}}}} \right] + C\)

Hướng dẫn: Đặt \(u = 1 + {\sin ^2}\left( {x - 1} \right)\)

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close